首页 > 代码库 > Sorting It All Out
Sorting It All Out
Description
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and
C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
Input
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will
be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters:
an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
Output
For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sample Input
4 6 A<B A<C B<C C<D B<D A<B 3 2 A<B B<A 26 1 A<Z 0 0
Sample Output
Sorted sequence determined after 4 relations: ABCD. Inconsistency found after 2 relations. Sorted sequence cannot be determined.
题解:题目有点没说清楚,输出顺序:1.假设前几个条件得出结果。输出第一个结果 2.矛盾结果在顺序不确定之前。
通常会卡在第二个上。
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <queue> #include <string> using namespace std; const int INF = 0x3fffffff; int in[100]; int t[100]; bool map[100][100]; bool sflag; bool iflag; bool cflag; bool flag; char s[100]; void ok(int n,int m,int k) { queue<int> q; for(int i = 0;i < n;i++) { t[i] = in[i]; if(t[i] == 0) { q.push(i); } } int cnt = 0; bool f = true; while(!q.empty()) { int x = q.front(); q.pop(); s[cnt++] = (char)(x + ‘A‘); t[x]--; if(!q.empty()) { f = false; } for(int i = 0;i < n;i++) { if(map[x][i]) { if(--t[i] == 0) { q.push(i); } } } } if(cnt == n && f) { sflag = true; flag = false; s[n] = ‘\0‘; return; } for(int i = 0;i < n;i++) { if(t[i] > 0) { iflag = true; flag = false; } } } int main() { int n,m; while(scanf("%d%d",&n,&m) != EOF && (n + m) != 0) { getchar(); char a,e,b; memset(map,false,sizeof(map)); memset(in,-1,sizeof(in)); int res = 0; flag = true; sflag = false; cflag = false; iflag = false; if(1 == n && m == 0) { printf("Sorted sequence determined after 0 relations: A.\n"); continue; } for(int i = 1;i <= m;i++) { scanf("%c%c%c",&a,&e,&b); if(in[b - ‘A‘] == -1) { in[b - ‘A‘] = 0; } if(in[a - ‘A‘] == -1) { in[a - ‘A‘] = 0; } if(!map[a - ‘A‘][b - ‘A‘]) { map[a - ‘A‘][b - ‘A‘] = true; in[b - ‘A‘]++; } if(flag) { ok(n,m,i); res = i; } getchar(); } if(sflag) { printf("Sorted sequence determined after %d relations: %s.\n",res,s); } else if(iflag) { printf("Inconsistency found after %d relations.\n",res); } else { printf("Sorted sequence cannot be determined.\n"); } } return 0; }
Sorting It All Out
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。