首页 > 代码库 > POJ 3693 Maximum repetition substring(后缀数组神题)
POJ 3693 Maximum repetition substring(后缀数组神题)
POJ 3693 Maximum repetition substring
题目链接
题意:给定一个字符串,求出其子串中,重复次数最多的串,如果有相同的,输出字典序最小的
思路:枚举长度l,把字符串按l分段,这样对于长度为l的字符串,肯定会包含一个分段位置,这样一来就可以在每个分段位置,往后做一次lcp,求出最大匹配长度,然后如果匹配长度有剩余,看剩余多少,就往前多少位置再做一次lcp,如果匹配出来长度更长,匹配次数就加1,这样就可以枚举过程中保存下答案了
这样问题还有字典序的问题,这个完全可以利用sa数组的特性,从字典序最小往大枚举,直到出现一个符合的位置就输出结束
代码:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; const int INF = 0x3f3f3f3f; const int MAXLEN = 200005; struct Suffix { int s[MAXLEN]; int sa[MAXLEN], t[MAXLEN], t2[MAXLEN], c[MAXLEN], n; int rank[MAXLEN], height[MAXLEN]; int best[MAXLEN][20]; int len; char str[MAXLEN]; int ans[MAXLEN], an; void build_sa(int m) { n++; int i, *x = t, *y = t2; for (i = 0; i < m; i++) c[i] = 0; for (i = 0; i < n; i++) c[x[i] = s[i]]++; for (i = 1; i < m; i++) c[i] += c[i - 1]; for (i = n - 1; i >= 0; i--) sa[--c[x[i]]] = i; for (int k = 1; k <= n; k <<= 1) { int p = 0; for (i = n - k; i < n; i++) y[p++] = i; for (i = 0; i < n; i++) if (sa[i] >= k) y[p++] = sa[i] - k; for (i = 0; i < m; i++) c[i] = 0; for (i = 0; i < n; i++) c[x[y[i]]]++; for (i = 0; i < m; i++) c[i] += c[i - 1]; for (i = n - 1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i]; swap(x, y); p = 1; x[sa[0]] = 0; for (i = 1; i < n; i++) x[sa[i]] = (y[sa[i - 1]] == y[sa[i]] && y[sa[i - 1] + k] == y[sa[i] + k]) ? p - 1 : p++; if (p >= n) break; m = p; } n--; } void getHeight() { int i, j, k = 0; for (i = 1; i <= n; i++) rank[sa[i]] = i; for (i = 0; i < n; i++) { if (k) k--; int j = sa[rank[i] - 1]; while (s[i + k] == s[j + k]) k++; height[rank[i]] = k; } } void initRMQ() { for (int i = 0; i < n; i++) best[i][0] = height[i + 1]; for (int j = 1; (1<<j) <= n; j++) for (int i = 0; i + (1<<j) - 1 < n; i++) best[i][j] = min(best[i][j - 1], best[i + (1<<(j - 1))][j - 1]); } int lcp(int L, int R) { L = rank[L] - 1; R = rank[R] - 1; if (L > R) swap(L, R); L++; int k = 0; while ((1<<(k + 1)) <= R - L + 1) k++; return min(best[L][k], best[R - (1<<k) + 1][k]); } void init() { n = 0; len = strlen(str); for (int i = 0; i < len; i++) s[n++] = str[i] - 'a' + 1; s[n] = 0; } void solve() { init(); build_sa(27); getHeight(); initRMQ(); int Max = 0; for (int l = 1; l < n; l++) { for (int i = 0; i + l < n; i += l) { int tmp = lcp(i, i + l); int ti = tmp / l + 1; int v = i - (l - tmp % l); if (v >= 0 && tmp % l && lcp(v, v + l) >= tmp) ti++; if (ti > Max) { an = 0; ans[an++] = l; Max = ti; } else if (ti == Max) ans[an++] = l; } } int ans_v, ans_l; for (int i = 1; i <= n; i++) { int flag = 0; for (int j = 0; j < an; j++) { int tmp = ans[j]; if (lcp(sa[i], sa[i] + tmp) >= (Max - 1) * tmp) { ans_v = sa[i]; ans_l = Max * tmp; flag = 1; } } if (flag) break; } for (int i = 0; i < ans_l; i++) printf("%c", str[ans_v + i]); printf("\n"); } } gao; int main() { int cas = 0; while(~scanf("%s", gao.str) && gao.str[0] != '#') { printf("Case %d: ", ++cas); gao.solve(); } return 0; }
POJ 3693 Maximum repetition substring(后缀数组神题)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。