首页 > 代码库 > hdu 4940 无源汇有上下界最大流

hdu 4940 无源汇有上下界最大流

题意:给出一个有向强连通图,每条边有两个值分别是破坏该边的代价和把该边建成无向边的代价(建立无向边的前提是删除该边)问是否存在一个集合S,和一个集合的补集T,破坏所有S集合到T集合的边代价和是X,然后修复T到S的边为无向边代价和是Y,满足Y<X;满足输出unhappy,否则输出happy;</span>
<span style="font-family: Arial, Helvetica, sans-serif;">分析:无源汇有上下界可行流判定, 原来每条边转化成  下界为D  上界为 D+B   ,判断是否存在可行流即可。</span>
 如果存在可行流  那么说明对于任意的 S 集合流出的肯定等于 流入的, 流出的计算的 X 肯定小于等于这个流量(X是下界之和), 计算出来的Y (上界之和)肯定大于等于 这个流量  肯定满足X<=Y。
<img src=http://www.mamicode.com/"http://img.blog.csdn.net/20140814105713964?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbXlwc3E=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" />>
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
#define N 300
#define inf 0x3fffffff
struct node {
   int u,v,w,next;
}bian[N*N*3];
int head[N],yong,dis[N],work[N];
void init(){
yong=0;
memset(head,-1,sizeof(head));
}
void addbian(int u,int v,int w) {
bian[yong].u=u;
bian[yong].v=v;
bian[yong].w=w;
bian[yong].next=head[u];
head[u]=yong++;
}
void add(int u,int v,int w) {
addbian(u,v,w);
addbian(v,u,0);
}
int min(int a,int b)
{
    return a<b?a:b;
}
int bfs(int s,int t)
{
    memset(dis,-1,sizeof(dis));
    queue<int>q;
    q.push(s);
    dis[s]=0;
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        for(int i=head[u];i!=-1;i=bian[i].next)
        {
            int v=bian[i].v;
            if(bian[i].w&&dis[v]==-1)
            {
                dis[v]=dis[u]+1;
                q.push(v);
                if(v==t)
                    return 1;
            }
        }
    }
    return 0;
}
int dfs(int  s,int limit,int t)
{
    if(s==t)return limit;
    for(int &i=work[s];i!=-1;i=bian[i].next)
    {
        int v=bian[i].v;
        if(bian[i].w&&dis[v]==dis[s]+1)
        {
            int tt=dfs(v,min(limit,bian[i].w),t);
            if(tt)
            {
                bian[i].w-=tt;
                bian[i^1].w+=tt;
                return tt;
            }
        }
    }
    return 0;
}
int dinic(int s,int t)
{
    int ans=0;
    while(bfs(s,t))
    {
        memcpy(work,head,sizeof(head));
        while(int tt=dfs(s,inf,t))
            ans+=tt;
    }
    return ans;
}
int main(){
        int sum,a,b,c,T,d,ans,i,k=0,n,m,t,S,w[N];
        scanf("%d",&t);
        while(t--) {
                init();
            scanf("%d%d",&n,&m);
        S=0;T=n+1;
        memset(w,0,sizeof(w));
            for(i=1;i<=m;i++) {
                scanf("%d%d%d%d",&a,&b,&c,&d);
                add(a,b,d);
               w[b]+=c;
               w[a]-=c;
            }
            sum=0;
            for(i=1;i<=n;i++) {
                if(w[i]>0) {
                    sum+=w[i];
                    add(S,i,w[i]);
                }
                if(w[i]<0)
                    add(i,T,-w[i]);
            }
            ans=dinic(S,T);
            if(sum==ans)
                printf("Case #%d: happy\n",++k);
            else
                printf("Case #%d: unhappy\n",++k);
        }

return 0;
}

hdu 4940 无源汇有上下界最大流