首页 > 代码库 > UVA 11504 - Dominos(强连通分量)
UVA 11504 - Dominos(强连通分量)
UVA 11504 - Dominos
题目链接
题意:给定一个多米诺骨牌的有向图,为最多要推几个才能全倒
思路:强连通分量,缩点后找出度数为0的点就是答案
代码:
#include <cstdio> #include <cstring> #include <vector> #include <stack> #include <algorithm> using namespace std; const int N = 100005; vector<int> g[N], scc[N]; int pre[N], lowlink[N], sccno[N], dfs_clock, scc_cnt; stack<int> S; void dfs_scc(int u) { pre[u] = lowlink[u] = ++dfs_clock; S.push(u); for (int i = 0; i < g[u].size(); i++) { int v = g[u][i]; if (!pre[v]) { dfs_scc(v); lowlink[u] = min(lowlink[u], lowlink[v]); } else if (!sccno[v]) lowlink[u] = min(lowlink[u], pre[v]); } if (lowlink[u] == pre[u]) { scc_cnt++; while (1) { int x = S.top(); S.pop(); sccno[x] = scc_cnt; if (x == u) break; } } } void find_scc(int n) { dfs_clock = scc_cnt = 0; memset(sccno, 0, sizeof(sccno)); memset(pre, 0, sizeof(pre)); for (int i = 0; i < n; i++) if (!pre[i]) dfs_scc(i); } int in[N]; int t, n, m, u[N], v[N]; int main() { scanf("%d", &t); while (t--) { scanf("%d%d", &n, &m); for (int i = 0; i < n; i++) g[i].clear(); for (int i = 0; i < m; i++) { scanf("%d%d", &u[i], &v[i]); u[i]--; v[i]--; g[u[i]].push_back(v[i]); } find_scc(n); memset(in, 0, sizeof(in)); for (int i = 0; i < m; i++) { if (sccno[u[i]] != sccno[v[i]]) in[sccno[v[i]]]++; } int ans = 0; for (int i = 1; i <= scc_cnt; i++) if (in[i] == 0) ans++; printf("%d\n", ans); } return 0; }
UVA 11504 - Dominos(强连通分量)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。