首页 > 代码库 > 28. Triangle && Pascal's Triangle && Pascal's Triangle II

28. Triangle && Pascal's Triangle && Pascal's Triangle II

Triangle

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[     [2],    [3,4],   [6,5,7],  [4,1,8,3]]

 

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note: Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

思想: 经典的动态规划题。

class Solution {public:    int minimumTotal(vector<vector<int> > &triangle) {        vector<int> pSum(triangle.size()+1, 0);        for(int i = triangle.size()-1; i >= 0; --i)            for(int j = 0; j < triangle[i].size(); ++j)                 pSum[j] = min(pSum[j]+triangle[i][j], pSum[j+1]+triangle[i][j]);        return pSum[0];    }};

 

Pascal‘s Triangle

Given numRows, generate the first numRows of Pascal‘s triangle.

For example, given numRows = 5, Return

[     [1],    [1,1],   [1,2,1],  [1,3,3,1], [1,4,6,4,1]]思想: 简单的动态规划。
class Solution {public:    vector<vector<int> > generate(int numRows) {        vector<vector<int> > vec;        if(numRows <= 0) return vec;                vec.push_back(vector<int>(1, 1));        if(numRows == 1) return vec;                vec.push_back(vector<int>(2, 1));        if(numRows == 2) return vec;                for(int row = 2; row < numRows; ++row) {            vector<int> vec2(row+1, 1);            for(int Id = 1; Id < row; ++Id)                vec2[Id] = vec[row-1][Id-1] + vec[row-1][Id];            vec.push_back(vec2);        }        return vec;    }};

 

Pascal‘s Triangle II

Given an index k, return the kth row of the Pascal‘s triangle.

For example, given k = 3, Return [1,3,3,1].

Note: Could you optimize your algorithm to use only O(k) extra space?

思想: 动态规划。注意O(k)空间时,每次计算新的行时,要从右向左加。否则,会发生值的覆盖。

class Solution {public:    vector<int> getRow(int rowIndex) {        vector<int> vec(rowIndex+1, 1);        for(int i = 2; i <= rowIndex; ++i)             for(int j = i-1; j > 0; --j) // key, not overwrite                vec[j] += vec[j-1];        return vec;    }};

 

28. Triangle && Pascal's Triangle && Pascal's Triangle II