首页 > 代码库 > 矩阵乘法的分解
矩阵乘法的分解
对于z*n的矩阵a1, a2, b1, b2有:
Q=(a1, a2)*(b1, b2)^T= a1*b1+ a2*b2.
其中,Q是n*n的矩阵。
论证:
1. 矩阵符合分解、分配律:A*B= A*(B1+ B2)= A*B1+ A*B2, 其中B=B1+B2, 且B, B1, B2是维度相同的矩阵。
2. (a1, a2)*(b1, 0)^T= (a1, 0)*(b1, 0)^T+ (0, a2)*(b1, 0)^T= a1*b1^T+ 0= a1*b1^T.
3. (a1, a2)*(b1, b2)^T= (a1, a2)*(b1, 0)^T+ (a1, a2)*(0, b2)^T= a1* b1^T+ a2* b2^T.
矩阵乘法的分解
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。