首页 > 代码库 > Unique Paths II <leetcode>

Unique Paths II <leetcode>

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[  [0,0,0],  [0,1,0],  [0,0,0]]

The total number of unique paths is 2.

 

算法:一开始理解错了,以为到一个点可以从上下左右,写了一个非常复杂的代码,后来自己感觉不对,上网上一查才发现,原来还是到一个点只能从上或左,那这道题就非常简单了,思路和第一个版本是一样的,只是增加了障碍物,所以计算的时候,考虑一下障碍物就行了,代码如下(动态规划):

 

 1 class Solution { 2 public: 3     int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) { 4         vector<vector<int>>  f(obstacleGrid.size(),vector<int>(obstacleGrid[0].size())); 5         f[0][0]=obstacleGrid[0][0]==0?1:0; 6         for(int i=1;i<f.size();i++) 7         { 8             f[i][0]=obstacleGrid[i][0]==0?f[i-1][0]:0; 9         }10         for(int i=1;i<obstacleGrid[0].size();i++)11         {12             f[0][i]=obstacleGrid[0][i]==0?f[0][i-1]:0;13         }14         15         for(int i=1;i<obstacleGrid.size();i++)16         {17             for(int j=1;j<obstacleGrid[0].size();j++)18             {19                 f[i][j]=obstacleGrid[i][j]==0?(f[i-1][j]+f[i][j-1]):0;20             }21         }22         return f[f.size()-1][f[0].size()-1];23     }24 };

 

Unique Paths II <leetcode>