首页 > 代码库 > hdu---(2604)Queuing(矩阵快速幂)
hdu---(2604)Queuing(矩阵快速幂)
Queuing
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2796 Accepted Submission(s): 1282
Problem Description
Queues and Priority Queues are data structures which are known to most computer scientists. The Queue occurs often in our daily life. There are many people lined up at the lunch time.
Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2L numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue else it is a E-queue.
Your task is to calculate the number of E-queues mod M with length L by writing a program.
Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2L numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue else it is a E-queue.
Your task is to calculate the number of E-queues mod M with length L by writing a program.
Input
Input a length L (0 <= L <= 10 6) and M.
Output
Output K mod M(1 <= M <= 30) where K is the number of E-queues with length L.
Sample Input
3 84 74 8
Sample Output
621
Author
WhereIsHeroFrom
首先我们不考虑去模的问题:
l = 0 0 种
l = 1 e的数目有 f,m: 2 种
l = 2 ...........ff,mm,fm,mf 4种
l = 3 6
l = 4 9
l = 5 15
l = 6 25
f5=f4+f3+f1;
f6=f5+f4+f2;
-------> fn={ fn-1+fn-3+fn-4 n>4;
由齐次方程构造矩阵.....
|fn | |1,0,1,1| |fn-1|
|fn-1| |1,0,0,0| |fn-2|
|fn-2| = |0,1,0,0|*|fn-3|
|fn-3| |0,0,1,0| |fn-4|
代码:
1 //#define LOCAL 2 #include<cstdio> 3 #include<cstring> 4 using namespace std; 5 //matrix --> ¾ØÕó 6 int mat[4][4]; 7 int ans[4][4]; 8 int len,m; 9 10 void init()11 {12 int cc[4][4]={13 {1,0,1,1},{1,0,0,0},14 {0,1,0,0},{0,0,1,0}};15 16 for(int i=0;i<4;i++)17 {18 for(int j=0;j<4;j++)19 {20 mat[i][j]=cc[i][j];21 if(i==j) ans[i][j]=1;22 else ans[i][j]=0;23 }24 }25 }26 void Matrix(int a[][4],int b[][4]) //¾ØÕóÏà³Ë27 {28 int i,j,k;29 int c[4][4]={0};30 for(j=0;j<4;j++){31 for(i=0;i<4;i++){32 for(k=0;k<4;k++){33 c[j][i]=(c[j][i]+a[j][k]*b[k][i])%m;34 }35 }36 }37 38 for(j=0;j<4;j++)39 for(i=0;i<4;i++)40 a[j][i]=c[j][i];41 42 }43 44 void pow(int n)45 {46 while(n>0)47 {48 if(n&1) Matrix(ans,mat);49 n>>=1;50 if(n==0) break;51 Matrix(mat,mat);52 }53 }54 int main()55 {56 #ifdef LOCAL57 freopen("test.in","r",stdin);58 #endif59 int f[4]={2,4,6,9};60 while(scanf("%d%d",&len,&m)!=EOF)61 {62 if(len==0)printf("%d\n",0);63 else if(len<=4)printf("%d\n",f[len-1]%m);64 else{65 init();66 pow(len-4);67 printf("%d\n",(ans[0][0]*f[3]+ans[0][1]*f[2]+ans[0][2]*f[1]+ans[0][3]*f[0])%m);68 }69 }70 return 0;71 }
hdu---(2604)Queuing(矩阵快速幂)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。