首页 > 代码库 > Leetcode dp Edit Distance
Leetcode dp Edit Distance
Edit Distance
Total Accepted: 14997 Total Submissions: 59129My SubmissionsGiven two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
题意:有两个单词,可以选择以下三种操作:增、删、替换一个字符,问需要经过多少次操作才能把第一个单词变为第二个
思路:dp
f[i][j] 表示word1[1..j]到word2[1..i]的最小编辑距离
if word2[i] == word1[j], f[i][j] = f[i - 1][j - 1]
else f[i][j] = min{f[i - 1][j - 1], f[i][j - 1], f[i - 1][j]} + 1
复杂度:时间O(n),空间O(1)
int minDistance(string word1, string word2) { if(word1.empty()) return word2.size(); if(word2.empty()) return word1.size(); vector<vector<int> > dp(word1.size() + 1, vector<int>(word2.size() + 1, 0)); // //初始化 for(int i = 0; i <= word1.size(); ++i) dp[i][0] = i; for(int j = 0; j <= word2.size(); ++j) dp[0][j] = j; //迭代 for(int i = 0; i < word1.size(); ++i){ for(int j = 0; j < word2.size(); ++j){ int ii = i + 1, jj = j + 1; if(word1[i] == word2[j]) dp[ii][jj] = dp[ii - 1][jj - 1]; else dp[ii][jj] = min(min(dp[ii][jj - 1], dp[ii - 1][jj]), dp[ii - 1][jj - 1]) + 1; } } return dp[word1.size()][word2.size()]; }
Leetcode dp Edit Distance
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。