首页 > 代码库 > LeetCode 72 Edit Distance

LeetCode 72 Edit Distance

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

思路:本题属于典型的动态规划问题,动态规划+备忘录方法,使用distance[i][j]来存储就是取word1前i个character和word2前j个character所得的最短编辑距离,并使用.代码如下:
public class Solution {
	public int minDistance(String word1, String word2) {
		int [][]distance=new int [word1.length()+1][word2.length()+1];
		for(int i=1;i<=word1.length();distance[i][0]=i,i++);
		for(int i=1;i<=word2.length();distance[0][i]=i,i++);
		for(int i=1;i<=word1.length();i++){
			for(int j=1;j<=word2.length();j++){
				if(word1.charAt(i-1)==word2.charAt(j-1)){
					distance[i][j]=distance[i-1][j-1];
				}else{
					distance[i][j]=1+Math.min(Math.min(distance[i-1][j], distance[i][j-1]),distance[i-1][j-1]);
				}
			}
			//System.out.println(Arrays.deepToString(distance));
		}
		return distance[word1.length()][word2.length()];
	}
}
后附递归版超时代码:
	Time Limit Exceeded,Last executed input:	"dinitrophenylhydrazine", "acetylphenylhydrazine"
	public int minDistance(String word1 ,int index1, String word2,int index2) {
		if(index1>=word1.length()&&index2>=word2.length()){
			return 0;
		}
		else if(index1>=word1.length()){
			return word2.length()-index2;
		}
		else if(index2>=word2.length()){
			return word1.length()-index1;
		}
		if(word1.charAt(index1)==word2.charAt(index2)){
			return minDistance(word1,index1+1,word2,index2+1);
		}else {
			int res1=1+Math.min(minDistance(word1,index1+1,word2,index2),minDistance(word1,index1,word2,index2+1));
			int res2=1+minDistance(word1,index1+1,word2,index2+1);
			return Math.min(res1, res2);
		}
	}
	
	public int minDistance(String word1, String word2) {
		return minDistance(word1 , 0, word2, 0);
	}



LeetCode 72 Edit Distance