首页 > 代码库 > 两种求集合所有子集的方法

两种求集合所有子集的方法

假设我们有一个求集合的全部子集(包含集合自身)的需求,即有一个集合s,包含两个元素 <a,b>,则其全部的子集为<a,ab,b>.

不难求得,子集个数sn与原集合元素个数n之间的关系为:sn=2^n-1。

 

本文分别讲述两种实现方法:

 

一:位图法:

1)构造一个和集合一样大小的数组A,分别与集合中的某个元素对应,数组A中的元素只有两种状态:“1”和“0”,分别代表每次子集输出中集合中对应元素是否要输出,这样数组A可以看作是原集合的一个标记位图。

2)数组A模拟整数“加一”的操作,每“加一”之后,就将原集合中所有与数组A中值为“1”的相对应的元素输出。

设原集合为<a,b,c,d>,数组A的某次“加一”后的状态为[1,0,1,1],则本次输出的子集为<a,c,d>。

具体代码如下:

/*使用非递归的思想 如果有一个数组  大小为n
  那么就使用n 位的二进制 如果对应的位为1 那么就输出这个位 
  如果对应的位为0 那么就不输出这个位*/

/*
   使用位图的思想 构造一个位集合 大小和数组大小一样,如果位图中相应的
   位为1,表示可以输出这个数组中的元素 如果位图中相应位为0 表示数组中相应位不输出
   这里模拟位图使用的数组 ,这里的重点是模拟数组加1的操作
 */

/*使用数组模拟位图加1的操作  数组可以一直加1  直到数组内所有元素都是1

  函数返回值为bool 数组初始化最高位为1*/
#define MAX_LEN 10
void bitmap(char str[],const int n)
{
	bitset<MAX_LEN> count;
	wang.set();
	int i=0;
	unsigned long value = http://www.mamicode.com/wang.to_ulong();>

3)时间复杂度:O(n*2^n)。其实,在遍历输出子集的过程中,可以对程序做进一步的优化。例如,在第m次迭代中,只需要遍历前k个元素,k=log2(m)+1。这样,不考虑数组模拟"加一"操作的话,总遍历次数为Sn=(n-2)*2^n+2,n>=2;Sn=1,n=1。虽然复杂度不变,但总运行时间会减少。

4)空间复杂度:该方法每次迭代都是独立进行,与上次迭代的结果没有任何关系。因此每次输出子集之后内存都可以被重复利用。只需要一个与原集合同样大小的数组,空间复杂度为O(n)。

 

 

二:递归迭代法:

1)采用递归迭代,具体过程如下,

设,原始集合s=<a,b,c,d>,子集结果为r:

第一次迭代:

r=<a>

第二次迭代:

r=<a ab b>

第三次迭代:

r=<a ab b ac abc bc c>

第四次迭代:

r=<a ab b ac abc bc c ad abd bd acd abcd bcd cd d>

 

每次迭代,都是上一次迭代的结果+上次迭代结果中每个元素都加上当前迭代的元素+当前迭代的元素。

具体代码如下:

/*上述方法不可用 明白递归的思想 下面每次都是输出back中的字符即可 
  这次输出的子集就是上次输出的子集 +这次迭代的元素 + 这次迭代的元素的本身*/
#if 1
void print(char* str)
{
	/*使用两个数组,一个记录上次迭代的结果 
	  一个记录这次需要输出的结果 
	  vec记录的是下次迭代需要参考的子集
	  back记录的是参考vec迭代以后生成新的子集
	 */
	int count=0;
	vector<char> vec;
	vector<char> back;
	int j;
	for(int i=0;i<strlen(str);i++)
	{
		if(i == 0)
		{
			vec.push_back(str[i]);
			vec.push_back(',');
			back=vec;
		}
		else
		{
			for(j=0;j<back.size();j++)
				if(back[j] == ',')
				{
					back.insert(back.begin() +j,str[i]);
					j++;
				}
			back.push_back(str[i]);
			back.push_back(',');			
		}
		for(j=0;j<back.size();j++)
		{
			if(back[j] == ',')
			{
				printf("\r\n");
				count++;
			}
			else
				printf("%c",back[j]);
			if(i)
				vec.push_back(back[j]);

		}
		back=vec;
	}
	printf("sub_set count is %d \r\n",count);
}
#endif

2)时间复杂度

根据上述过程,不难求的,第k次迭代的迭代次数为:2^k-1。n>=k>=1,迭代n次,总的遍历次数为:2^(n+1)-(2+n),n>=1。

则时间复杂都为O(2^n)。

 

3)空间复杂度

由于该算法,下一次迭代过程都需要上一次迭代的结果,而最后一次迭代之后就没有下一次了。因此假设原始集合有n个元素,则在迭代过程中,总共需要保存的子集个数为2^(n-1)-1,n>=1。但需要注意的是,这里之考虑了子集的个数,每个子集元素的长度都视为1,这点要注意。

总结:

递归是非常耗时的,因为是递归,在第一种方法时,使用了C++中的bitset,这个方法效率很高,在第二个方法中,使用两个向量的目的是,一个向量记录了这次迭代需要输出的集合,一个向量是为了这次迭代需要参考上次输出的情况。

两种求集合所有子集的方法