首页 > 代码库 > 求一个集合的所有子集问题

求一个集合的所有子集问题

转载请注明出处

http://blog.csdn.net/pony_maggie/article/details/31042651


作者:小马



一个包含n个元素的集合,求它的所有子集。比如集合A= {1,2,3}, 它的所有子集是:

{ {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}, @}(@表示空集)。

 

这种问题一般有两种思路,先说说第一种,递归。递归肯定要基于一个归纳法的思想,这个思想用到了二叉树的遍历,如下图所示:

 


可以这样理解这张图,从集合A的每个元素自身分析,它只有两种状态,或是某个子集的元素,或是不属于任何子集,所以求子集的过程就可以看成对每个元素进行“取舍”的过程。上图中,根结点是初始状态,叶子结点是终结状态,该状态下的8个叶子结点就表示集合A的8个子集。第i层(i=1,2,3…n)表示已对前面i-1层做了取舍,所以这里可以用递归了。整个过程其实就是对二叉树的先序遍历。

 

根据上面的思想,首先需要一个结构来存储元素,这个”取舍”过程,其实就是在线性结构中的增加和删除操作,很自然考虑用链式的存储结构,所以我们先来实现一个链表:

typedef struct  LNode
{
	int data;
	LNode *next;
}LinkList;

//建立一个链表,你逆向输入n个元素的值
int listCreate(LinkList *srcList, int number)
{
	LinkList *pTemp;
	int i = 0;
	srcList->next = NULL;
	srcList->data = http://www.mamicode.com/0;>


有了这个链表,递归算法实现起来就很容易了:

//求冥集,nArray是存放n个元素的数组
//首次调用i传1,表示已对前面i-1个元素做了处理
void GetPowerSet(int nArray[], int nLength, int i, LinkList *outPut)
{
	int k = 0;
	int nTemp = 0;
	if (i >= nLength)
	{
		printList(*outPut);
	}
	else
	{
		k = listLength(outPut);
		listInsert(outPut, k+1, nArray[i]);
		GetPowerSet(nArray, nLength, i+1, outPut);
		listDelete(outPut, k+1, &nTemp);
		GetPowerSet(nArray, nLength, i+1, outPut);
	}

}


还有一种思想比较巧妙,可以叫按位对应法。如集合A={a,b,c},对于任意一个元素,在每个子集中,要么存在,要么不存在

映射为子集:

(a,b,c)

(1,1,1)->(a,b,c)

(1,1,0)->(a,b)

(1,0,1)->(a,c)

(1,0,0)->(a)

(0,1,1)->(b,c)

(0,1,0)->(b)

(0,0,1)->(c)

(0,0,0)->@(@表示空集)

观察以上规律,与计算机中数据存储方式相似,故可以通过一个整型数与集合映射...000 ~ 111...111(表示有,表示无,反之亦可),通过该整型数逐次增可遍历获取所有的数,即获取集合的相应子集。

实现起来很容易:

void GetPowerSet2(int nArray[], int nLength)
{
	int mark = 0;
	int i = 0;
	int nStart = 0;
	int nEnd = (1 << nLength) -1;
	bool bNullSet = false;

	for (mark = nStart; mark <= nEnd; mark++)
	{
		bNullSet = true;
		for (i = 0; i < nLength; i++)
		{
			if (((1<<i)&mark) != 0) //该位有元素输出
			{
				bNullSet = false;
				printf("%d\t", nArray[i]);
			}
		}
		if (bNullSet) //空集合
		{
			printf("@\t");
		}
		printf("\n");
	}
}


分析代码可以得出它的复杂度是O(n*2^n)。

 

代码下载地址:

https://github.com/pony-maggie/PowerSetDemo

http://download.csdn.net/detail/pony_maggie/7499161