首页 > 代码库 > 箱图及其统计学意义
箱图及其统计学意义
箱图及其统计学意义
盒形图英文名称为boxplot,中文名称又有如下说法:箱图、箱线图、盒子图。盒形图相对简单,使用方便,相对于另外三种图形有自身独特优点。
盒图(boxplot)对于显示数据的离散的分布情况效果不错
盒图是在1977年由美国的统计学家约翰·图基(John Tukey)发明的。它由五个数值点组成:最小值(min),下四分位数(Q1),中位数(median),上四分位数(Q3),最大值(max)。也可以往盒图里面加入平均值(mean)。如上图。下四分位数、中位数、上四分位数组成一个“带有隔间的盒子”。上四分位数到最大值之间建立一条延伸线,这个延伸线成为“胡须(whisker)”。
由于现实数据中总是存在各式各样地“脏数据”,也成为“离群点”,于是为了不因这些少数的离群数据导致整体特征的偏移,将这些离群点单独汇出,而盒图中的胡须的两级修改成最小观测值与最大观测值。这里有个经验,就是最大(最小)观测值设置为与四分位数值间距离为1.5个IQR(中间四分位数极差)。即
- IQR = Q3-Q1,即上四分位数与下四分位数之间的差,也就是盒子的长度。
- 最小观测值为min = Q1 - 1.5*IQR,如果存在离群点小于最小观测值,则胡须下限为最小观测值,离群点单独以点汇出。如果没有比最小观测值小的数,则胡须下限为最小值。
- 最大观测值为max = Q3 -1.5*IQR,如果存在离群点大于最大观测值,则胡须上限为最大观测值,离群点单独以点汇出。如果没有比最大观测值大的数,则胡须上限为最大值。
通过盒图,在分析数据的时候,盒图能够有效地帮助我们识别数据的特征:
- 直观地识别数据集中的异常值(查看离群点)。
- 判断数据集的数据离散程度和偏向(观察盒子的长度,上下隔间的形状,以及胡须的长度)
参考:
http://cn.mathworks.com/help/stats/boxplot.html
http://baike.baidu.com/item/%E7%9B%92%E5%BD%A2%E5%9B%BE
http://www.blogjava.net/norvid/articles/317235.html
箱图及其统计学意义
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。