首页 > 代码库 > POJ3641_Pseudoprime numbers【快速幂】【伪素数】
POJ3641_Pseudoprime numbers【快速幂】【伪素数】
Pseudoprime numbers
Time Limit: 1000MSMemory Limit: 65536K
Total Submissions: 6544Accepted: 2648
DescriptionFermat‘s theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample Input
3 2
10 3
341 2
341 3
1105 2
1105 3
0 0
Sample Output
no
no
yes
no
yes
yes
Source
Waterloo Local Contest, 2007.9.23
题目大意:费马定理:a^p = a(mod p) (a为大于1的整数,p为素数),一些非素数p,同样也符合上边的
定理,这样的p被称作基于a的伪素数,给你p和a,判断p是否是基于a的伪素数
思路:很简单的快速幂取余+素性判断
如果p为素数,则直接输出no
如果p不为素数,则进行快速幂取余判断是否为伪素数,若是,输出yes,不是,输出no
#include<stdio.h> #include<math.h> __int64 QuickPow(__int64 a,__int64 p) { __int64 r = 1,base = a; __int64 m = p; while(p!=0) { if(p&1) r = r * base % m; base = base * base % m; p >>= 1; } return r; } bool IsPrime(__int64 p) { for(__int64 i = 2; i <= sqrt(p) + 1; i++) { if(p % i == 0) return false; } return true; } int main() { __int64 a,p; while(~scanf("%I64d %I64d",&p,&a) && (p!=0 || a!=0)) { if(IsPrime(p)) printf("no\n"); else { if(QuickPow(a,p) == a) printf("yes\n"); else printf("no\n"); } } return 0; }
POJ3641_Pseudoprime numbers【快速幂】【伪素数】
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。