首页 > 代码库 > bzoj-2338 2338: [HNOI2011]数矩形(计算几何)

bzoj-2338 2338: [HNOI2011]数矩形(计算几何)

题目链接:

2338: [HNOI2011]数矩形

Time Limit: 20 Sec  Memory Limit: 128 MB

Description

技术分享

Input

 

Output

 

题意:

 

思路:

求最大的矩形面积,先把这些点转化成线段,记录下线段的长度和中点和两个端点,形成矩形说明对角线长度相等,且共中点,所以把线段按长度和中点排序,如果都相等,然后用三角形的三个顶点坐标计算面积的公式计算最大面积就好了;

AC代码:

/**************************************************************    Problem: 2338    User: LittlePointer    Language: C++    Result: Accepted    Time:5172 ms    Memory:73520 kb****************************************************************/ #include <iostream>#include <cstdio>#include <cstring>#include <algorithm>#include <cmath>#include <bits/stdc++.h>#include <stack>#include <map>  using namespace std;  #define For(i,j,n) for(int i=j;i<=n;i++)#define mst(ss,b) memset(ss,b,sizeof(ss));  typedef  long long LL;  template<class T> void read(T&num) {    char CH; bool F=false;    for(CH=getchar();CH<‘0‘||CH>‘9‘;F= CH==‘-‘,CH=getchar());    for(num=0;CH>=‘0‘&&CH<=‘9‘;num=num*10+CH-‘0‘,CH=getchar());    F && (num=-num);}int stk[70], tp;template<class T> inline void print(T p) {    if(!p) { puts("0"); return; }    while(p) stk[++ tp] = p%10, p/=10;    while(tp) putchar(stk[tp--] + ‘0‘);    putchar(‘\n‘);}  const LL mod=1e9+7;const double PI=acos(-1.0);const int inf=1e9;const int N=4e5+10;const int maxn=1e3+520;const double eps=1e-12; struct PO{    LL x,y;}po[maxn];struct Seg{    PO m;    int s,e;    LL dist;}seg[maxn*maxn];inline LL dis(int a,int b){    return (po[a].x-po[b].x)*(po[a].x-po[b].x)+(po[a].y-po[b].y)*(po[a].y-po[b].y);}int cmp(Seg a,Seg b){    if(a.dist==b.dist)    {        if(a.m.x==b.m.x)return a.m.y<b.m.y;        return a.m.x<b.m.x;    }    return a.dist<b.dist;}inline LL getans(int a,int b,int c){    LL sum=po[a].x*po[b].y+po[b].x*po[c].y+po[c].x*po[a].y;    sum=sum-po[a].x*po[c].y-po[b].x*po[a].y-po[c].x*po[b].y;    if(sum<0)return -sum;    return sum;}inline LL solve(int temp,int f){    return getans(seg[temp].s,seg[temp].e,seg[f].s);}int main(){    int n;    read(n);    For(i,1,n)    {        read(po[i].x);        read(po[i].y);    }    int cnt=0;    for(int i=1;i<=n;i++)    {        for(int j=i+1;j<=n;j++)        {            cnt++;            seg[cnt].s=i;            seg[cnt].e=j;            seg[cnt].m.x=po[i].x+po[j].x;            seg[cnt].m.y=po[i].y+po[j].y;            seg[cnt].dist=dis(i,j);        }    }    sort(seg,seg+cnt+1,cmp);    LL ans=0;    for(int i=1;i<=cnt;i++)    {        for(int j=i+1;;j++)        {            if(seg[j].dist==seg[i].dist&&seg[j].m.x==seg[i].m.x&&seg[j].m.y==seg[i].m.y)ans=max(ans,solve(j,i));            else break;        }    }    cout<<ans<<"\n";    return 0;}

  

bzoj-2338 2338: [HNOI2011]数矩形(计算几何)