首页 > 代码库 > hdu 4405 Aeroplane chess (概率DP)
hdu 4405 Aeroplane chess (概率DP)
Aeroplane chess
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1503 Accepted Submission(s): 1025
Problem Description
Hzz loves aeroplane chess very much. The chess map contains N+1 grids labeled from 0 to N. Hzz starts at grid 0. For each step he throws a dice(a dice have six faces with equal probability to face up and the numbers on the faces are 1,2,3,4,5,6). When Hzz is at grid i and the dice number is x, he will moves to grid i+x. Hzz finishes the game when i+x is equal to or greater than N.
There are also M flight lines on the chess map. The i-th flight line can help Hzz fly from grid Xi to Yi (0<Xi<Yi<=N) without throwing the dice. If there is another flight line from Yi, Hzz can take the flight line continuously. It is granted that there is no two or more flight lines start from the same grid.
Please help Hzz calculate the expected dice throwing times to finish the game.
There are also M flight lines on the chess map. The i-th flight line can help Hzz fly from grid Xi to Yi (0<Xi<Yi<=N) without throwing the dice. If there is another flight line from Yi, Hzz can take the flight line continuously. It is granted that there is no two or more flight lines start from the same grid.
Please help Hzz calculate the expected dice throwing times to finish the game.
Input
There are multiple test cases.
Each test case contains several lines.
The first line contains two integers N(1≤N≤100000) and M(0≤M≤1000).
Then M lines follow, each line contains two integers Xi,Yi(1≤Xi<Yi≤N).
The input end with N=0, M=0.
Each test case contains several lines.
The first line contains two integers N(1≤N≤100000) and M(0≤M≤1000).
Then M lines follow, each line contains two integers Xi,Yi(1≤Xi<Yi≤N).
The input end with N=0, M=0.
Output
For each test case in the input, you should output a line indicating the expected dice throwing times. Output should be rounded to 4 digits after decimal point.
Sample Input
2 0 8 3 2 4 4 5 7 8 0 0
Sample Output
1.1667 2.3441
学习概率DP推荐一个链接:http://kicd.blog.163.com/blog/static/126961911200910168335852/
思路:由当前点可以走向下面6个相邻位置,走到这几个点的概率均相等。用dp[i]表示该点走到目标的期望步数,则该点的期望可以由它可以到达的6个点相加得到,因为它走到下一个位置花费时间1,故要加一。见式子:
dp[0]=dp[1]*1/6+dp[2]*1/6+dp[3]*1/6+dp[4]*1/6+dp[5]*1/6+dp[6]*1/6+1; dp[n]=0(自身到自身期望为0)
那么,我们倒着推过来就能得到答案为dp[0]。
#include"stdio.h" #include"string.h" #include"iostream" #include"algorithm" #include"math.h" #include"vector" using namespace std; #define LL __int64 #define N 100005 #define max(a,b) (a>b?a:b) vector<int>g[N]; int vis[N]; double dp[N]; int main() { int n,m,i,j,v,a,b; while(scanf("%d%d",&n,&m),n||m) { for(i=0;i<=n;i++) g[i].clear(); for(i=0;i<m;i++) { scanf("%d%d",&a,&b); g[b].push_back(a); } memset(dp,0,sizeof(dp)); //易知dp[n]=0 memset(vis,0,sizeof(vis)); for(i=0;i<g[n].size();i++) { v=g[n][i]; dp[v]=dp[n]; vis[v]=1; } for(i=n-1;i>=0;i--) { if(!vis[i]) { for(j=i+1;j<=i+6;j++) { dp[i]+=dp[j]/6; } dp[i]+=1; } for(j=0;j<g[i].size();j++) { v=g[i][j]; dp[v]=dp[i]; vis[v]=1; } } printf("%.4f\n",dp[0]); } return 0; }
hdu 4405 Aeroplane chess (概率DP)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。