首页 > 代码库 > 希尔伯特空间的基本理论及其应用
希尔伯特空间的基本理论及其应用
$\bf(投影定理)$设$M$为$\bf{Hilbert}$空间$X$的闭线性子空间,则对任意$x\in X$,存在唯一的$x_0\in M$,${x_1} \in {M^ \bot }$,使得$x = {x_0} + {x_1}$
方法一
$\bf(Riesz表示定理)$设$f$为$\bf{Hilbert}$空间$X$上的连续线性泛函,则存在唯一的$y\in X$,使得对任意的$x\in X$,有$f\left( x \right) = \left( {x,y} \right)$,且$\left\| f \right\| = \left\| y \right\|$
方法一
$\bf(Riesz表示定理)$
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。