首页 > 代码库 > 求解方法之梯度下降法
求解方法之梯度下降法
梯度下降法(最速下降法):
求解无约束最优化问题的一种最常用的方法,当目标函数是凸函数时,梯度下降法的解是全局最优解.一般情况下,其解不保证是全局最优解.梯度下降法的收敛速度也未必是很快的.
###############################Matlab###############################
%% 最速下降法图示
% 设置步长为0.1,f_change为改变前后的y值变化,仅设置了一个退出条件。
%syms x;%求f=x^2最小值
f=x^2;
step=0.1;x=2;k=0; %设置步长,初始值,迭代记录数
f_change=x^2; %初始化差值
f_current=x^2; %计算当前函数值
ezplot(@(x,f)f-x.^2) %画出函数图像
axis([-2,2,-0.2,3]) %固定坐标轴
hold on
while f_change>0.000000001 %设置条件,两次计算的值之差小于某个数,跳出循环
x=x-step*2*x; %-2*x为梯度反方向,step为步长,!最速下降法!
f_change = f_current - x^2; %计算两次函数值之差
f_current = x^2 ; %重新计算当前的函数值
plot(x,f_current,‘ro‘,‘markersize‘,7) %标记当前的位置
drawnow;pause(0.2);
k=k+1;
end
hold off
fprintf(‘在迭代%d次后找到函数最小值为%e,对应的x值为%e\n‘,k,x^2,x)
############################## Matlab ########################################
%最速下降法,求解线性方程组Ax=b
x=初值;
r=b-A*x;
while norm(r)>1e-10
alpha=r’*r/r’*A*r;
x=x+alpha*r;
r=b-A*x;
end
求解方法之梯度下降法