首页 > 代码库 > Matrix_二维树状数组
Matrix_二维树状数组
Description
Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).
We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a ‘0‘ then change it into ‘1‘ otherwise change it into ‘0‘). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.
1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].
We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a ‘0‘ then change it into ‘1‘ otherwise change it into ‘0‘). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.
1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].
Input
The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.
The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.
The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.
Output
For each querying output one line, which has an integer representing A[x, y].
There is a blank line between every two continuous test cases.
There is a blank line between every two continuous test cases.
Sample Input
12 10C 2 1 2 2Q 2 2C 2 1 2 1Q 1 1C 1 1 2 1C 1 2 1 2C 1 1 2 2Q 1 1C 1 1 2 1Q 2 1
Sample Output
1001
【题意】给出一个n*n的方阵,刚开始都为0;然后q个要求,c x1 y1 x2,y2表示左上角(x1,y1)右下角(x2,y2)的这个矩形里面的各方格与现在状态相反(即0变1,1变0),Q x1 y1问(x1,y1)的状态。
【思路】二维树状数组,每次状态变化都加一,最后对2取余
参考资料:http://www.cnblogs.com/lvpengms/archive/2010/04/24/1719133.html
当对(x1,y1),(x2,y2)区间置反时,需要改动四个地方就是4个角就可以了。为什么呢?如下图,假设A区未需要置反的区域,因为改动A区的左上角时,由树状数组的性质知:A,B,C,D4个区域都是要被置反的,所以在依次置反BD,CD,D,这样,置反的总过程为ABCD,BD,CD,D,这样我们就会发现结果对2取模时,只有A区被置反,B,C,D三个区都没有变化。明白原理之后就好做了。
A | B |
C | D
|
#include<iostream>#include<string.h>#include<stdio.h>using namespace std;const int N=1005;int c[N][N];int q,n;int lowbit(int x){ return x&(-x);}int get_sum(int x,int y){ int ans=0; for(int i=x;i>0;i-=lowbit(i)) for(int j=y;j>0;j-=lowbit(j)) ans+=c[i][j]; return ans;}void update(int x,int y,int data){ for(int i=x;i<=n;i+=lowbit(i)) for(int j=y;j<=n;j+=lowbit(j)) c[i][j]+=data;}int main(){ int t; scanf("%d",&t); while(t--) { scanf("%d%d",&n,&q); memset(c,0,sizeof(c)); char op[10]; int x1,y1,x2,y2; while(q--) { scanf("%s",op); if(op[0]==‘C‘) { scanf("%d%d%d%d",&x1,&y1,&x2,&y2); update(x1,y1,1); update(x2+1,y1,1); update(x1,y2+1,1); update(x2+1,y2+1,1); } else { scanf("%d%d",&x1,&y1); if(get_sum(x1,y1)%2==0) puts("0"); else puts("1"); } } if(t>0) puts(""); } return 0;}
Matrix_二维树状数组
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。