首页 > 代码库 > POJ 2155 Matrix(二维树状数组,绝对具体)
POJ 2155 Matrix(二维树状数组,绝对具体)
Matrix
Description
Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).
We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a ‘0‘ then change it into ‘1‘ otherwise change it into ‘0‘). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions. 1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2). 2. Q x y (1 <= x, y <= n) querys A[x, y]. Input
The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.
The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above. Output
For each querying output one line, which has an integer representing A[x, y].
There is a blank line between every two continuous test cases. Sample Input 1 2 10 C 2 1 2 2 Q 2 2 C 2 1 2 1 Q 1 1 C 1 1 2 1 C 1 2 1 2 C 1 1 2 2 Q 1 1 C 1 1 2 1 Q 2 1 Sample Output 1 0 0 1 Source
POJ Monthly,Lou Tiancheng
|
题意:给出矩阵左上角和右下角坐标,矩阵里的元素 1变0 ,0 变1,然后给出询问,问某个点是多少。
题解:纠结了好久,看了这篇博客后秒懂http://blog.sina.com.cn/s/blog_626489680100k75p.html
先举个一维的样例:你要使区间[x,y]所有加上一个值v,结合树状数组的功能,能够类似扫气球那样,在x处加v, y+1处减1
这样假设你要求x处的值,就转换成求[1,x]的和了,比如 :一个n=6的数组,一開始为0 0 0 0 0 0
在[2,4]加上2后变成 0 2 0 0 -2 0 这样前缀和 sum[1]=0;sum[2]=2;sum[3]=2;sum[4]=2;sum[5]=0;sum[6]=0;
依次代表了每一个数的值。
二维的也一样,由于二维树状数组的getsum(int x,int y)函数是求矩阵(1,1)~(x,y)的值得和。也就类似于前缀和。原理和一维的一样
仅仅只是线操作改成了平面操作。自己能够画个图感受下。
即:
add(x,y,1);
add(x,y1+1,-1);
add(x1+1,y,-1);
add(x1+1,y1+1,1);
然后查询单点就是求和了。
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<cstdlib> #include<cmath> #define N 1040 #define ll long long using namespace std; int n; int bit[N][N]; int sum(int i,int j) { int s=0; while(i>0) { int jj=j; while(jj>0) { s+=bit[i][jj]; jj-=jj&-jj; } i-=i&-i; } return s; } void add(int i,int j,int x) { while(i<=n) { int jj=j; while(jj<=n) { bit[i][jj]+=x; jj+=jj&-jj; } i+=i&-i; } } int main() { freopen("test.in","r",stdin); int t; cin>>t; while(t--) { int q; scanf("%d%d ",&n,&q); memset(bit,0,sizeof bit); char c; int x,y,x1,y1; while(q--) { scanf("%c",&c); if(c==‘C‘) { scanf("%d%d%d%d",&x,&y,&x1,&y1); add(x,y,1); add(x,y1+1,-1); add(x1+1,y,-1); add(x1+1,y1+1,1);//重叠的部分加上 } else { scanf("%d%d",&x,&y); printf("%d\n",sum(x,y)%2); } getchar(); } if(t)printf("\n"); } return 0; }
POJ 2155 Matrix(二维树状数组,绝对具体)