首页 > 代码库 > hdu3045之斜率DP

hdu3045之斜率DP

Picnic Cows

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1563    Accepted Submission(s): 478


Problem Description
It’s summer vocation now. After tedious milking, cows are tired and wish to take a holiday. So Farmer Carolina considers having a picnic beside the river. But there is a problem, not all the cows consider it’s a good idea! Some cows like to swim in West Lake, some prefer to have a dinner in Shangri-la ,and others want to do something different. But in order to manage expediently, Carolina coerces all cows to have a picnic!
Farmer Carolina takes her N (1<N≤400000) cows to the destination, but she finds every cow’s degree of interest in this activity is so different that they all loss their interests. So she has to group them to different teams to make sure that every cow can go to a satisfied team. Considering about the security, she demands that there must be no less than T(1<T≤N)cows in every team. As every cow has its own interest degree of this picnic, we measure this interest degree’s unit as “Moo~”. Cows in the same team should reduce their Moo~ to the one who has the lowest Moo~ in this team——It’s not a democratical action! So Carolina wishes to minimize the TOTAL reduced Moo~s and groups N cows into several teams.
For example, Carolina has 7 cows to picnic and their Moo~ are ‘8 5 6 2 1 7 6’ and at least 3 cows in every team. So the best solution is that cow No.2,4,5 in a team (reduce (2-1)+(5-1) Moo~)and cow No.1,3,6,7 in a team (reduce ((7-6)+(8-6)) Moo~),the answer is 8.
 

Input
The input contains multiple cases.
For each test case, the first line has two integer N, T indicates the number of cows and amount of Safe-base line.
Following n numbers, describe the Moo~ of N cows , 1st is cow 1 , 2nd is cow 2, and so on.
 

Output
One line for each test case, containing one integer means the minimum of the TOTAL reduced Moo~s to group N cows to several teams.
 

Sample Input
7 3 8 5 6 2 1 7 6
 

Sample Output
8
 

/*题意:
有n个奶牛分别有对应的兴趣值,现在对奶牛分组,每组成员不少于t, 
在每组中所有的成员兴趣值要减少到一致,问总共最少需要减少的兴趣值是多少。

分析:
先对n个数进行排序,则可以分析出分组成员一定是连续的 
dp[i]表示前i个数得到的最少值
则:从j~i作为一组 
dp[i]=dp[j-1]+sum[i]-sum[j-1]-(i-j+1)*s[j];//sum[i]表示前i个数的和
=>dp[i]=dp[j-1]+sum[i]-sum[j-1]+(j-1)*s[j]-i*s[j];
由于有i*s[j]这一项,所以无法直接在扫描数组的过程中用单调队列维护:
dp[j-1]-sum[j-1]+(j-1)*s[j]-i*s[j]的最小值。
考虑用斜率dp!
假定k<j<=i-t以j~i作为一组比以k~i作为一组更优
则:
dp[j-1]+sum[i]-sum[j-1]-(i-j+1)*s[j] <= dp[k-1]+sum[i]-sum[k-1]-(i-k+1)*s[k]
=>dp[j-1]+sum[i]-sum[j-1]+(j-1)*s[j]-i*s[j] <= dp[k-1]+sum[i]-sum[k-1]+(k-1)*s[k]-i*s[k]
=>(dp[j-1]-sum[j-1]+(j-1)*s[j] - (dp[k-1]-sum[k-1]+(k-1)*s[k]))/(s[j]-s[k])<=i;//保证s[j]>=s[k]
令:
y1 = dp[j-1]-sum[j-1]+(j-1)*s[j]
y2 = dp[k-1]-sum[k-1]+(k-1)*s[k]
x1 = s[j]
x2 = s[k]
所以变成了:
(y1 - y2)/(x1 - x2) <= i;
斜率!
只需要维护这个斜率即可 
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef __int64 LL;
using namespace std;

const int MAX = 400000 + 10;
int n,t,q[MAX];
LL s[MAX],sum[MAX],dp[MAX];

LL GetY(int j,int k){
	return dp[j-1]-sum[j-1]+(j-1)*s[j]-(dp[k-1]-sum[k-1]+(k-1)*s[k]);
}

LL GetX(int j,int k){
	return s[j]-s[k];
}

LL DP(){
	int head=0,tail=1;
	q[0]=1;
	for(int i=1;i<=n;++i)sum[i]=sum[i-1]+s[i];
	for(int i=t;i<2*t;++i)dp[i]=sum[i]-i*s[1];//初始化 
	for(int i=2*t;i<=n;++i){//i从2*t开始 
		while(head+1<tail && GetY(i-t+1,q[tail-1])*GetX(q[tail-1],q[tail-2])<=GetY(q[tail-1],q[tail-2])*GetX(i-t+1,q[tail-1]))--tail;
		q[tail++]=i-t+1;
		while(head+1<tail && GetY(q[head+1],q[head])<=GetX(q[head+1],q[head])*i)++head;	
		dp[i]=dp[q[head]-1]+sum[i]-sum[q[head]-1]+(q[head]-1)*s[q[head]]-i*s[q[head]];
	}
	return dp[n];
}

int main(){
	while(~scanf("%d%d",&n,&t)){
		for(int i=1;i<=n;++i)scanf("%I64d",s+i);//cin>>s[i];
		sort(s+1,s+1+n);
		printf("%I64d\n",DP());
	}
	return 0;
}

/*题意:
有n个奶牛分别有对应的兴趣值,现在对奶牛分组,每组成员不少于t, 
在每组中所有的成员兴趣值要减少到一致,问总共最少需要减少的兴趣值是多少。

分析:
先对n个数进行排序,则可以分析出分组成员一定是连续的 
dp[i]表示前i个数得到的最少值
则:从j+1~i作为一组 
dp[i]=dp[j]+sum[i]-sum[j]-(i-j)*s[j+1];//sum[i]表示前i个数的和
=>dp[i]=dp[j]+sum[i]-sum[j]+j*s[j+1]-i*s[j+1];
由于有i*s[j+1]这一项,所以无法直接在扫描数组的过程中用单调队列维护:
dp[j]-sum[j]+j*s[j+1]-i*s[j+1]的最小值。
考虑用斜率dp!
假定k<=j<i-t以j+1~i作为一组比以k+1~i作为一组更优
则:
dp[j]+sum[i]-sum[j]-(i-j)*s[j+1] <= dp[k]+sum[i]-sum[k]-(i-k)*s[k+1]
=>dp[j]+sum[i]-sum[j]+j*s[j+1]-i*s[j+1] <= dp[k]+sum[i]-sum[k]+k*s[k+1]-i*s[k+1]
=>(dp[j]-sum[j]+j*s[j+1] - (dp[k]-sum[k]+k*s[k+1]))/(s[j+1]-s[k+1])<=i;//保证s[j]>=s[k]
令:
y1 = dp[j]-sum[j]+j*s[j+1]
y2 = dp[k]-sum[k]+k*s[k+1]
x1 = s[j+1]
x2 = s[k+1]
所以变成了:
(y1 - y2)/(x1 - x2) <= i;
斜率!
只需要维护这个斜率即可 
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef __int64 LL;
using namespace std;

const int MAX = 400000 + 10;
int n,t,q[MAX];
LL s[MAX],sum[MAX],dp[MAX];

LL GetY(int j,int k){
	return dp[j]-sum[j]+j*s[j+1]-(dp[k]-sum[k]+k*s[k+1]);
}

LL GetX(int j,int k){
	return s[j+1]-s[k+1];
}

LL DP(){
	int head=0,tail=1;
	q[0]=0;
	for(int i=1;i<=n;++i)sum[i]=sum[i-1]+s[i];
	for(int i=t;i<2*t;++i)dp[i]=sum[i]-i*s[1];//初始化 
	for(int i=2*t;i<=n;++i){//i从2*t开始 
		int j=i-t;
		while(head+1<tail && GetY(j,q[tail-1])*GetX(q[tail-1],q[tail-2])<=GetY(q[tail-1],q[tail-2])*GetX(j,q[tail-1]))--tail;
		q[tail++]=j;
		while(head+1<tail && GetY(q[head+1],q[head])<=GetX(q[head+1],q[head])*i)++head;
		dp[i]=dp[q[head]]+sum[i]-sum[q[head]]+q[head]*s[q[head]+1]-i*s[q[head]+1];
	}
	return dp[n];
}

int main(){
	while(~scanf("%d%d",&n,&t)){
		for(int i=1;i<=n;++i)scanf("%I64d",s+i);//cin>>s[i];
		sort(s+1,s+1+n);
		printf("%I64d\n",DP());
	}
	return 0;
}

/*题意:
有n个奶牛分别有对应的兴趣值,现在对奶牛分组,每组成员不少于t, 
在每组中所有的成员兴趣值要减少到一致,问总共最少需要减少的兴趣值是多少。

分析:
先对n个数进行排序,则可以分析出分组成员一定是连续的 
dp[i]表示前i个数得到的最少值
则:从j+1~i作为一组 
dp[i]=dp[j]+sum[i]-sum[j]-(i-j)*s[j+1];//sum[i]表示前i个数的和
=>dp[i]=dp[j]+sum[i]-sum[j]+j*s[j+1]-i*s[j+1];
由于有i*s[j+1]这一项,所以无法直接在扫描数组的过程中用单调队列维护:
dp[j]-sum[j]+j*s[j+1]-i*s[j+1]的最小值。
考虑用斜率dp!
假定k<=j<i-t以j+1~i作为一组比以k+1~i作为一组更优
则:
dp[j]+sum[i]-sum[j]-(i-j)*s[j+1] <= dp[k]+sum[i]-sum[k]-(i-k)*s[k+1]
=>dp[j]+sum[i]-sum[j]+j*s[j+1]-i*s[j+1] <= dp[k]+sum[i]-sum[k]+k*s[k+1]-i*s[k+1]
=>(dp[j]-sum[j]+j*s[j+1] - (dp[k]-sum[k]+k*s[k+1]))/(s[j+1]-s[k+1])<=i;//保证s[j]>=s[k]
令:
y1 = dp[j]-sum[j]+j*s[j+1]
y2 = dp[k]-sum[k]+k*s[k+1]
x1 = s[j+1]
x2 = s[k+1]
所以变成了:
(y1 - y2)/(x1 - x2) <= i;
斜率!
只需要维护这个斜率即可 
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef __int64 LL;
using namespace std;

const int MAX = 400000 + 10;
int n,t,q[MAX];
LL s[MAX],sum[MAX],dp[MAX];

LL GetY(int j,int k){
    return dp[j]-sum[j]+j*s[j+1]-(dp[k]-sum[k]+k*s[k+1]);
}

LL GetX(int j,int k){
    return s[j+1]-s[k+1];
}

LL DP(){
    int head=0,tail=1;
    q[0]=0;
    for(int i=1;i<=n;++i)sum[i]=sum[i-1]+s[i];
    //for(int i=t;i<2*t;++i)dp[i]=sum[i]-i*s[1];//初始化 
    for(int i=1;i<=n;++i){//i从2*t开始 
        while(head+1<tail && GetY(q[head+1],q[head])<=GetX(q[head+1],q[head])*i)++head;
        dp[i]=dp[q[head]]+sum[i]-sum[q[head]]+q[head]*s[q[head]+1]-i*s[q[head]+1];
        if(i-t+1<t)continue; 
        while(head+1<tail && GetY(i-t+1,q[tail-1])*GetX(q[tail-1],q[tail-2])<=GetY(q[tail-1],q[tail-2])*GetX(i-t+1,q[tail-1]))--tail;
        q[tail++]=i-t+1;
    }
    return dp[n];
}

int main(){
    while(~scanf("%d%d",&n,&t)){
        for(int i=1;i<=n;++i)scanf("%I64d",s+i);//cin>>s[i];
        sort(s+1,s+1+n);
        printf("%I64d\n",DP());
    }
    return 0;
}