首页 > 代码库 > SGU 275 To xor or not to xor 高斯消元求N个数中选择任意数XORmax

SGU 275 To xor or not to xor 高斯消元求N个数中选择任意数XORmax

275. To xor or not to xor

 




The sequence of non-negative integers A1, A2, ..., AN is given. You are to find some subsequence Ai 1, Ai 2, ..., Ai k (1 <= i 1 < i 2 < ... < i k<= N) such, that Ai 1 XOR Ai 2 XOR ... XOR Ai k has a maximum value.

Input
The first line of the input file contains the integer number N (1 <= N <= 100). The second line contains the sequence A1, A2, ..., AN (0 <= Ai <= 10^18). 

Output
Write to the output file a single integer number -- the maximum possible value of Ai 1 XOR Ai 2 XOR ... XOR Ai k

Sample test(s)

Input
 
 

11 9 5 
 
 

Output
 
 
14 

 

 题意:
  从N个数中选择任意个数,求异或的最大值
题解:
  从高位贪心
  高斯消元判断能否构成1
  复杂度 60*N*N
 
#include<iostream>#include<algorithm>#include<cstdio>#include<cstring>#include<cmath>#include<vector>using namespace std;#pragma comment(linker, "/STACK:102400000,102400000")#define ls i<<1#define rs ls | 1#define mid ((ll+rr)>>1)#define pii pair<int,int>#define MP make_pairtypedef long long LL;const long long INF = 1e18;const double Pi = acos(-1.0);const int N = 1e3+10, M = 1e6, mod = 1e9+7, inf = 2e9;int n,a[66][N];int main() {    scanf("%d",&n);    for(int i = 0; i < n; ++i) {        LL x;int cnt = 0;        scanf("%I64d",&x);        while(x) {            a[cnt++][i] = x%2;            x/=2;        }    }    for(int  i = 0; i < 63; ++i) a[i][n] = 1;    LL ans = 0;    for(int  i = 62; i >= 0; --i) {        int x = -1;        for(int j = 0; j < n; ++j) {            if(a[i][j]) {                x = j;break;            }        }        if(x == -1 && a[i][n] == 0) {            ans += 1LL<<i;        } else if(x != -1) {            ans += 1LL<<i;            for(int k = i - 1; k >=0; --k) {                if(a[k][x]) {                    for(int j = 0; j <= n; ++j) a[k][j] ^= a[i][j];                }            }        }    }    cout<<ans<<endl;    return 0;}

 

 

SGU 275 To xor or not to xor 高斯消元求N个数中选择任意数XORmax