首页 > 代码库 > 深度网络实现手写体识别
深度网络实现手写体识别
基于自动编码机(autoencoder),这里网络的层次结构为一个输入层,两个隐层,后面再跟着一个softmax分类器:
采用贪婪算法,首先把input和feature1看作一个自动编码机,训练出二者之间的参数,然后用feature1层的激活值作为输出,输入到feature2,即把feature1和feature2再看作一个自动编码机,训练出这两层之间的参数,这两步都没有用到分类标签,所以是无监督学习,最后把feature2的激活值作为提取的的特征,输入到分类器,这里需要标签来计算代价函数,从而由优化这个代价函数来训练出feature2与分类器之间的参数,所以这一步是有监督学习,这一步完成之后,把测试样本输入网络,最后会输出该样本分别属于每一类的概率,选出最大概率对应的类别,就是最终的分类结果。
为了使得分类结果更加精确,可以对训练出的参数进行微调,就是在有监督学习之后,我们利用有标签的训练数据可以计算出分类残差,然后利用这个残差反向传播,对已经训练出的参数进行进一步微调,会对最终预测的精度有很大提升
下面是第一层训学习出的特征:
可以看出都是一些笔迹的边缘
作为对比,训练结果显示,微调之后,分类准确度有大幅提升,所以在训练深度网络之后,利用部分标签数据进行微调是一件很有必要的学习:
Before Finetuning Test Accuracy: 91.760%
After Finetuning Test Accuracy: 97.710%
下面是部分程序代码,需要用到,完整代码请先下载minFunc.rar,然后下载stacked_exercise.rar,minFunc.rar里面是lbfgs优化函数,在优化网络参数时需要用到。
%% CS294A/CS294W Stacked Autoencoder Exercise% Instructions% ------------% % This file contains code that helps you get started on the% sstacked autoencoder exercise. You will need to complete code in% stackedAECost.m% You will also need to have implemented sparseAutoencoderCost.m and % softmaxCost.m from previous exercises. You will need the initializeParameters.m% loadMNISTImages.m, and loadMNISTLabels.m files from previous exercises.% % For the purpose of completing the assignment, you do not need to% change the code in this file. %%%======================================================================%% STEP 0: Here we provide the relevant parameters values that will% allow your sparse autoencoder to get good filters; you do not need to % change the parameters below.inputSize = 28 * 28;numClasses = 10;hiddenSizeL1 = 200; % Layer 1 Hidden SizehiddenSizeL2 = 200; % Layer 2 Hidden SizesparsityParam = 0.1; % desired average activation of the hidden units. % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p", % in the lecture notes). lambda = 3e-3; % weight decay parameter beta = 3; % weight of sparsity penalty term %%======================================================================%% STEP 1: Load data from the MNIST database%% This loads our training data from the MNIST database files.% Load MNIST database filestrainData = loadMNISTImages(‘train-images.idx3-ubyte‘);trainLabels = loadMNISTLabels(‘train-labels.idx1-ubyte‘);trainLabels(trainLabels == 0) = 10; % Remap 0 to 10 since our labels need to start from 1%%======================================================================%% STEP 2: Train the first sparse autoencoder% This trains the first sparse autoencoder on the unlabelled STL training% images.% If you‘ve correctly implemented sparseAutoencoderCost.m, you don‘t need% to change anything here.% Randomly initialize the parameterssae1Theta = initializeParameters(hiddenSizeL1, inputSize);%% ---------------------- YOUR CODE HERE ---------------------------------% Instructions: Train the first layer sparse autoencoder, this layer has% an hidden size of "hiddenSizeL1"% You should store the optimal parameters in sae1OptThetaaddpath minFunc/;options = struct;options.Method = ‘lbfgs‘;options.maxIter = 400;options.display = ‘on‘;%训练出第一层网络的参数[sae1OptTheta, cost] = minFunc(@(p) sparseAutoencoderCost(p,... inputSize,hiddenSizeL1,lambda,... sparsityParam,beta,trainData),... sae1Theta,options);save(‘step2.mat‘, ‘sae1OptTheta‘);W1 = reshape(sae1OptTheta(1:hiddenSizeL1 * inputSize), hiddenSizeL1, inputSize);display_network(W1‘);% -------------------------------------------------------------------------%%======================================================================%% STEP 2: Train the second sparse autoencoder% This trains the second sparse autoencoder on the first autoencoder% featurse.% If you‘ve correctly implemented sparseAutoencoderCost.m, you don‘t need% to change anything here.[sae1Features] = feedForwardAutoencoder(sae1OptTheta, hiddenSizeL1, ... inputSize, trainData);% Randomly initialize the parameterssae2Theta = initializeParameters(hiddenSizeL2, hiddenSizeL1);%% ---------------------- YOUR CODE HERE ---------------------------------% Instructions: Train the second layer sparse autoencoder, this layer has% an hidden size of "hiddenSizeL2" and an inputsize of% "hiddenSizeL1"%% You should store the optimal parameters in sae2OptTheta[sae2OptTheta, cost] = minFunc(@(p)sparseAutoencoderCost(p,... hiddenSizeL1,hiddenSizeL2,lambda,... sparsityParam,beta,sae1Features),... sae2Theta,options);% figure;% W11 = reshape(sae1OptTheta(1:hiddenSizeL1 * inputSize), hiddenSizeL1, inputSize);% W2 = reshape(sae2OptTheta(1:hiddenSizeL2 * hiddenSizeL1), hiddenSizeL2, hiddenSizeL1);% figure;% display_network(W2‘);% -------------------------------------------------------------------------%%======================================================================%% STEP 3: Train the softmax classifier% This trains the sparse autoencoder on the second autoencoder features.% If you‘ve correctly implemented softmaxCost.m, you don‘t need% to change anything here.[sae2Features] = feedForwardAutoencoder(sae2OptTheta, hiddenSizeL2, ... hiddenSizeL1, sae1Features);% Randomly initialize the parameterssaeSoftmaxTheta = 0.005 * randn(hiddenSizeL2 * numClasses, 1);%% ---------------------- YOUR CODE HERE ---------------------------------% Instructions: Train the softmax classifier, the classifier takes in% input of dimension "hiddenSizeL2" corresponding to the% hidden layer size of the 2nd layer.%% You should store the optimal parameters in saeSoftmaxOptTheta %% NOTE: If you used softmaxTrain to complete this part of the exercise,% set saeSoftmaxOptTheta = softmaxModel.optTheta(:);softmaxLambda = 1e-4;numClasses = 10;softoptions = struct;softoptions.maxIter = 400;softmaxModel = softmaxTrain(hiddenSizeL2,numClasses,softmaxLambda,... sae2Features,trainLabels,softoptions);saeSoftmaxOptTheta = softmaxModel.optTheta(:);save(‘step4.mat‘, ‘saeSoftmaxOptTheta‘);% -------------------------------------------------------------------------%%======================================================================%% STEP 5: Finetune softmax model% Implement the stackedAECost to give the combined cost of the whole model% then run this cell.% Initialize the stack using the parameters learnedstack = cell(2,1);stack{1}.w = reshape(sae1OptTheta(1:hiddenSizeL1*inputSize), ... hiddenSizeL1, inputSize);stack{1}.b = sae1OptTheta(2*hiddenSizeL1*inputSize+1:2*hiddenSizeL1*inputSize+hiddenSizeL1);stack{2}.w = reshape(sae2OptTheta(1:hiddenSizeL2*hiddenSizeL1), ... hiddenSizeL2, hiddenSizeL1);stack{2}.b = sae2OptTheta(2*hiddenSizeL2*hiddenSizeL1+1:2*hiddenSizeL2*hiddenSizeL1+hiddenSizeL2);% Initialize the parameters for the deep model[stackparams, netconfig] = stack2params(stack);stackedAETheta = [ saeSoftmaxOptTheta ; stackparams ];%% ---------------------- YOUR CODE HERE ---------------------------------% Instructions: Train the deep network, hidden size here refers to the ‘% dimension of the input to the classifier, which corresponds % to "hiddenSizeL2".%%[stackedAEOptTheta, cost] = minFunc(@(p)stackedAECost(p,inputSize,hiddenSizeL2,... numClasses, netconfig,lambda, trainData, trainLabels),... stackedAETheta,options);save(‘step5.mat‘, ‘stackedAEOptTheta‘);% -------------------------------------------------------------------------%%======================================================================%% STEP 6: Test % Instructions: You will need to complete the code in stackedAEPredict.m% before running this part of the code%% Get labelled test images% Note that we apply the same kind of preprocessing as the training settestData = loadMNISTImages(‘t10k-images.idx3-ubyte‘);testLabels = loadMNISTLabels(‘t10k-labels.idx1-ubyte‘);testLabels(testLabels == 0) = 10; % Remap 0 to 10[pred] = stackedAEPredict(stackedAETheta, inputSize, hiddenSizeL2, ... numClasses, netconfig, testData);acc = mean(testLabels(:) == pred(:));fprintf(‘Before Finetuning Test Accuracy: %0.3f%%\n‘, acc * 100);[pred] = stackedAEPredict(stackedAEOptTheta, inputSize, hiddenSizeL2, ... numClasses, netconfig, testData);acc = mean(testLabels(:) == pred(:));fprintf(‘After Finetuning Test Accuracy: %0.3f%%\n‘, acc * 100);% Accuracy is the proportion of correctly classified images% The results for our implementation were:%% Before Finetuning Test Accuracy: 87.7%% After Finetuning Test Accuracy: 97.6%%% If your values are too low (accuracy less than 95%), you should check % your code for errors, and make sure you are training on the % entire data set of 60000 28x28 training images % (unless you modified the loading code, this should be the case)
function [ cost, grad ] = stackedAECost(theta, inputSize, hiddenSize, ... numClasses, netconfig, ... lambda, data, labels) % stackedAECost: Takes a trained softmaxTheta and a training data set with labels,% and returns cost and gradient using a stacked autoencoder model. Used for% finetuning. % theta: trained weights from the autoencoder% visibleSize: the number of input units% hiddenSize: the number of hidden units *at the 2nd layer*% numClasses: the number of categories% netconfig: the network configuration of the stack% lambda: the weight regularization penalty% data: Our matrix containing the training data as columns. So, data(:,i) is the i-th training example. % labels: A vector containing labels, where labels(i) is the label for the% i-th training example%% Unroll softmaxTheta parameter% We first extract the part which compute the softmax gradientsoftmaxTheta = reshape(theta(1:hiddenSize*numClasses), numClasses, hiddenSize);% Extract out the "stack"stack = params2stack(theta(hiddenSize*numClasses+1:end), netconfig);% You will need to compute the following gradientssoftmaxThetaGrad = zeros(size(softmaxTheta));stackgrad = cell(size(stack));for d = 1:numel(stack) stackgrad{d}.w = zeros(size(stack{d}.w)); stackgrad{d}.b = zeros(size(stack{d}.b));endcost = 0; % You need to compute this% You might find these variables usefulM = size(data, 2);groundTruth = full(sparse(labels, 1:M, 1));%% --------------------------- YOUR CODE HERE -----------------------------% Instructions: Compute the cost function and gradient vector for % the stacked autoencoder.%% You are given a stack variable which is a cell-array of% the weights and biases for every layer. In particular, you% can refer to the weights of Layer d, using stack{d}.w and% the biases using stack{d}.b . To get the total number of% layers, you can use numel(stack).%% The last layer of the network is connected to the softmax% classification layer, softmaxTheta.%% You should compute the gradients for the softmaxTheta,% storing that in softmaxThetaGrad. Similarly, you should% compute the gradients for each layer in the stack, storing% the gradients in stackgrad{d}.w and stackgrad{d}.b% Note that the size of the matrices in stackgrad should% match exactly that of the size of the matrices in stack.%depth = numel(stack);z = cell(depth+1,1);a = cell(depth+1, 1);a{1} = data;for layer = (1:depth) z{layer+1} = stack{layer}.w * a{layer} + repmat(stack{layer}.b, [1, size(a{layer},2)]); a{layer+1} = sigmoid(z{layer+1});endM = softmaxTheta * a{depth+1};M = bsxfun(@minus, M, max(M));p = bsxfun(@rdivide, exp(M), sum(exp(M)));cost = -1/numClasses * groundTruth(:)‘ * log(p(:)) + lambda/2 * sum(softmaxTheta(:) .^ 2);softmaxThetaGrad = -1/numClasses * (groundTruth - p) * a{depth+1}‘ + lambda * softmaxTheta;d = cell(depth+1);d{depth+1} = -(softmaxTheta‘ * (groundTruth - p)) .* a{depth+1} .* (1-a{depth+1});for layer = (depth:-1:2) d{layer} = (stack{layer}.w‘ * d{layer+1}) .* a{layer} .* (1-a{layer});endfor layer = (depth:-1:1) stackgrad{layer}.w = (1/numClasses) * d{layer+1} * a{layer}‘; stackgrad{layer}.b = (1/numClasses) * sum(d{layer+1}, 2);end% -------------------------------------------------------------------------%% Roll gradient vectorgrad = [softmaxThetaGrad(:) ; stack2params(stackgrad)];end% You might find this usefulfunction sigm = sigmoid(x) sigm = 1 ./ (1 + exp(-x));end
function [pred] = stackedAEPredict(theta, inputSize, hiddenSize, numClasses, netconfig, data) % stackedAEPredict: Takes a trained theta and a test data set,% and returns the predicted labels for each example. % theta: trained weights from the autoencoder% visibleSize: the number of input units% hiddenSize: the number of hidden units *at the 2nd layer*% numClasses: the number of categories% data: Our matrix containing the training data as columns. So, data(:,i) is the i-th training example. % Your code should produce the prediction matrix % pred, where pred(i) is argmax_c P(y(c) | x(i)). %% Unroll theta parameter% We first extract the part which compute the softmax gradientsoftmaxTheta = reshape(theta(1:hiddenSize*numClasses), numClasses, hiddenSize);% Extract out the "stack"stack = params2stack(theta(hiddenSize*numClasses+1:end), netconfig);%% ---------- YOUR CODE HERE --------------------------------------% Instructions: Compute pred using theta assuming that the labels start % from 1.depth = numel(stack);z = cell(depth+1,1);a = cell(depth+1, 1);a{1} = data;for layer = (1:depth) z{layer+1} = stack{layer}.w * a{layer} + repmat(stack{layer}.b, [1, size(a{layer},2)]); a{layer+1} = sigmoid(z{layer+1});end[~, pred] = max(softmaxTheta * a{depth+1});% -----------------------------------------------------------end% You might find this usefulfunction sigm = sigmoid(x) sigm = 1 ./ (1 + exp(-x));end
深度网络实现手写体识别