首页 > 代码库 > bzoj 2732 [HNOI2012]射箭 半平面交(刘汝佳版不超时) + 整型二分处理
bzoj 2732 [HNOI2012]射箭 半平面交(刘汝佳版不超时) + 整型二分处理
题目来源:
http://61.187.179.132/JudgeOnline/problem.php?id=2732
题意: 对于一个靶子, 得到两个不等式。 裸地半平面交 。
分析:
用的 一般的 模板,总是TLE 。
改成了 刘汝佳 版本 ,依然超时, 所谓的常数太大????
后来注意到 : 当 判断两个向量平行且 同向 ,取左边的一个,不要用 叉积,用极角判断, 可行。
精度 开 1e -16 , 卡精度严重。
注意:这里 也不需要用 friend 写, 也可以ac.
整型二分左闭右闭区间 :
int Bin_search(){ int mid , Mid = 0 , l = 0 , r = n ; while(l <= r){ mid = (r + l) >> 1 ; if(check(mid)){ Mid = mid ; l = mid + 1; } else r = mid - 1 ; } return Mid ; }
代码如下
:
const double EPS = 1e-16 ; const int Max_N = 200010 ; double add(double a, double b){ return (fabs(a + b) < EPS * (fabs(a) + fabs(b)) ) ? 0 : (a + b ); } struct Point { double x, y; Point(){} Point(double x, double y):x(x) , y(y){} friend Point operator - (const Point &b , const Point &a){ return Point(add(b.x , -a.x) , add(b.y , -a.y)) ; } friend Point operator + (const Point &b , const Point &a){ return Point(add(b.x , a.x) , add(b.y , a.y)) ; } friend Point operator * (const Point &a , double d){ return Point(a.x * d , a.y * d) ; } }; double Cross(const Point &a, const Point &b){return add(a.x * b.y , -a.y * b.x) ; } struct Line{ //有向直线 Point st, ed; double rad ; Line(){} Line(const Point &st, const Point &ed):st(st),ed(ed){ rad = atan2(ed.y - st.y , ed.x - st.x) ;} friend bool operator < (const Line &a , const Line &b){ return a.rad - b.rad < - EPS ; } }; bool onLeft(const Point &a ,const Line &l){ //点a在直线向量的左边 return Cross(a - l.st , l.ed - l.st) <= 0 ; } Point Crossnode(const Line &l , const Line &bl){ //两直线的交点 double t = Cross(l.ed - l.st , l.st - bl.st); double t1 = Cross(l.ed - l.st , bl.ed - bl.st) ; return bl.st + (bl.ed - bl.st)*(t / t1) ; } //用于计算的双端队列 Line deq[Max_N] ; Point pt[Max_N] ; bool halfPanelCross(Line line[] , int ln){ int i; sort(line + 1, line + ln + 1 ) ; int first = 1 , last = 1 ; deq[last] = line[1] ; for(i = 2 ; i <= ln ; i++){ while(first < last && !onLeft(pt[last - 1] , line[i])) last -- ; while(first < last && !onLeft(pt[first] , line[i] ) ) first ++ ; deq[++ last] = line[i] ; if(fabs(deq[last - 1].rad- line[i].rad) < EPS && onLeft(line[i].st , deq[--last]) ) deq[last] = line[i] ; if(first < last) pt[last - 1] = Crossnode(deq[last] , deq[last - 1]) ; } while(first < last && !onLeft(pt[last - 1] , deq[first]) ) last -- ; return last - first > 1 ; } Line List[Max_N] , tmp[Max_N]; int n; bool check(int mid){ for(int i = 1 ; i <= mid*2 ; i++) tmp[i] = List[i] ; return halfPanelCross(tmp , mid *2) ; } int Bin_search(){ int mid , Mid = 0 , l = 0 , r = n ; while(l <= r){ mid = (r + l) >> 1 ; if(check(mid)){ Mid = mid ; l = mid + 1; } else r = mid - 1 ; } return Mid ; } int main(){ scanf("%d" , &n) ; int i ; double x, y1 ,y2 ; int ln = 0 ; for(i =1; i <= n ; i++){ scanf("%lf%lf%lf" , &x , &y1 ,&y2) ; List[++ ln ] = Line(Point(0 , y1 / x) , Point(1 , y1 / x - x ) ) ; List[++ ln ] = Line(Point(0 , y2 / x) , Point(-1 , y2 / x + x ) ) ; } printf("%d\n" ,Bin_search() ) ; return 0 ; }
不加friend版本:
double EPS = 1e-16 ; const int Max_N = 200010 ; double add(double a, double b){ return (fabs(a + b) < EPS * (fabs(a) + fabs(b)) ) ? 0 : (a + b ); } struct Point { double x, y; Point(){} Point(double x, double y):x(x) , y(y){} Point operator - ( Point a){ return Point(add(x , -a.x) , add(y , -a.y)) ; } Point operator + ( Point a){ return Point(add(x , a.x) , add(y , a.y)) ; } Point operator * ( double d){ return Point(x * d , y * d) ; } }; double Cross( Point a, Point b){return add(a.x * b.y , -a.y * b.x) ; } struct Line{ //有向直线 Point st, ed; double rad ; Line(){} Line( Point st, Point ed):st(st),ed(ed){ rad = atan2(ed.y - st.y , ed.x - st.x) ;} bool operator < ( const Line &b) const { return rad - b.rad < - EPS ; } }; bool onRight(Point a ,Line l){ //点a在直线向量的右边 return Cross(a - l.st , l.ed - l.st) > 0 ; } Point Crossnode( Line l , Line bl){ //两直线的交点 double t = Cross(l.ed - l.st , l.st - bl.st); double t1 = Cross(l.ed - l.st , bl.ed - bl.st) ; return bl.st + (bl.ed - bl.st)*(t / t1) ; } //用于计算的双端队列 Line deq[Max_N] ; Point pt[Max_N] ; Point poly[Max_N] ; bool halfPanelCross(Line line[] , int ln){ int i; sort(line + 1, line + ln + 1 ) ; int first = 1 , last = 1 ; deq[last] = line[1] ; for(i = 2 ; i <= ln ; i++){ while(first < last && onRight(pt[last - 1] , line[i])) last -- ; while(first < last && onRight(pt[first] , line[i] ) ) first ++ ; deq[++ last] = line[i] ; //两向量平行且同向,取左边一个 if(fabs(deq[last - 1].rad- line[i].rad) < EPS && !onRight(line[i].st , deq[--last]) ) deq[last] = line[i] ; if(first < last) pt[last - 1] = Crossnode(deq[last] , deq[last - 1]) ; } while(first < last && onRight(pt[last - 1] , deq[first]) ) last -- ; return last - first > 1 ; if(last - first <= 1) return 0 ; // 空集 pt[last] = Crossnode(deq[first] , deq[last]) ; // 从deq复制到输出中, 半平面交的凸多边形顶点 int m = 0 ; for(i = first ; i <= last ; i++) poly[m++] = pt[i] ; return m ; }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。