首页 > 代码库 > bzoj3550: [ONTAK2010]Vacation&&1283: 序列

bzoj3550: [ONTAK2010]Vacation&&1283: 序列

给出一个长度为 的正整数序列Ci,求一个子序列,使得原序列中任意长度为 的子串中被选出的元素不超过K(K,M<=100) 个,并且选出的元素之和最大。

 

据说是什么经典区间带权限制问题?

有两种写法...

1.可以根据流量平衡列方程,然后添加一个变量将不等式化成等式。具体看NOI2008的志愿者招募。 
2.直接每个点依次排开,i->i+1连(k,0)【k是流量限制,0是费用】的边,然后对于一个区间[l,r]就l->r连(1,val);然后源点->1连(k,0),n->T一样,跑一边最大费用最大流即可。经过每个点的流量都保证了不超过k

 

技术分享
#include<bits/stdc++.h>#define rep(i,l,r) for(int i=l;i<=r;++i)using namespace std;const int N=10240,inf=214748364;struct Edge{    int to,next,from,c,w;}e[1000000];int head[N],tot=1,ans,dis[N],from[N],m,K,n,T,x;bool used[N];inline void ins(int u,int v,int w,int cost) {     e[++tot].to=v; e[tot].next=head[u]; head[u]=tot; e[tot].w=w; e[tot].c=cost; e[tot].from=u;}inline bool spfa() {     queue<int> q; rep(i,0,T) dis[i]=-1,from[i]=0,used[i]=0; dis[0]=1; q.push(0); used[0]=1;       while(!q.empty()) {          int x=q.front(); q.pop();          used[x]=0;          for(int k=head[x];k;k=e[k].next)            if(e[k].w>0&&dis[x]+e[k].c>dis[e[k].to]){                  dis[e[k].to]=dis[x]+e[k].c; from[e[k].to]=k;                  if(!used[e[k].to]) {                        used[e[k].to]=1; q.push(e[k].to);                  }            }     }     return dis[T]!=-1;}inline void run(){     int x=inf;     for(int k=from[T];k;k=from[e[k].from]) x=min(x,e[k].w);     for(int k=from[T];k;k=from[e[k].from]) {          e[k].w-=x; e[k^1].w+=x; ans+=e[k].c*x;     }}inline void insert(int u,int v,int w,int c){    ins(u,v,w,c); ins(v,u,0,-c);}int main(){    scanf("%d%d",&m,&K); n=m*3;    T=n+1;    rep(i,1,n) {        scanf("%d",&x);        insert(i-1,i,K,0);        if(i+m<=n) insert(i,i+m,1,x);else insert(i,T,1,x);    }    insert(n,T,K,0);    while(spfa()) run();    printf("%d\n",ans);}
View Code

 

bzoj3550: [ONTAK2010]Vacation&&1283: 序列