首页 > 代码库 > 杭电1081(动态规划)
杭电1081(动态规划)
题目:
Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2-4 1 -4 1 -1 8 0 -2
Sample Output
15
思路:
把二维转换为一维,变成求一个序列的最大子串问题;
如-1 -2;-3 -4先变成-1 -2;-4 -6.
把第一行减第零行就是求矩阵第一行的最大值,第二行减第零行
就是求整个矩阵的最大值;第二行减第一行就是求矩阵第二行的
最大值!
代码:
1 #include<stdio.h> 2 #include<string.h> 3 #define inf -0xfffffff 4 //#include<stdlib.h> 5 /*#include<iostream> 6 #include<algorithm> 7 using namespace std;*/ 8 9 10 int main(){ 11 int n, i, j, value[101][101], dp[101][101], max, zmax, k, sum; 12 while(scanf("%d", &n) != EOF){ 13 memset(dp, 0, sizeof(dp)); 14 for(i = 1; i <= n; i ++){ 15 for(j = 1; j <= n; j ++){ 16 scanf("%d", &value[i][j]); 17 dp[i][j] = dp[i - 1][j] + value[i][j]; 18 } 19 } 20 zmax = inf; 21 for(i = 1; i <= n; i ++){ 22 for(j = i; j <= n; j ++){ 23 max = inf; 24 sum = 0; 25 for(k = 1; k <= n; k ++){ 26 sum += dp[j][k] - dp[i - 1][k]; 27 if(sum > max){ 28 max = sum; 29 } 30 if(sum < 0){ 31 sum = 0; 32 } 33 } 34 if(max > zmax){ 35 zmax = max; 36 } 37 } 38 } 39 printf("%d\n", zmax); 40 } 41 return 0; 42 }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。