首页 > 代码库 > POJ2155 Matrix

POJ2155 Matrix

 
Time Limit: 3000MS Memory Limit: 65536K
Total Submissions: 25080 Accepted: 9293

Description

Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N). 

We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a ‘0‘ then change it into ‘1‘ otherwise change it into ‘0‘). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions. 

1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2). 
2. Q x y (1 <= x, y <= n) querys A[x, y]. 

Input

The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case. 

The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above. 

Output

For each querying output one line, which has an integer representing A[x, y]. 

There is a blank line between every two continuous test cases. 

Sample Input

12 10C 2 1 2 2Q 2 2C 2 1 2 1Q 1 1C 1 1 2 1C 1 2 1 2C 1 1 2 2Q 1 1C 1 1 2 1Q 2 1

Sample Output

1001

Source

POJ Monthly,Lou Tiancheng
 
二维树状数组果然比二维线段树简单多了
讲一下二维树状数组
其实我也不清楚多出来的一维怎么做
但既然多套了一重循环就算作是二维了
文字说不清,自己仿照一维画一个图就明白了
再说这道题
假设只有一维,我们可以用树状数组维护一个差分数组,区间首尾打标记+1,求和即可
那么推广到二维,把维护差分数组的方式看成打一个标记
四个点+1,对询问求一遍和模2
尹神的办法zrl说可以推广,而这种办法只对01有效
就是说对于正常的差分数组,区间修改应该是首加尾减
到了二维应该这样维护
-1 +1
+1 -1
就这样吧
 
——by隔壁老司机RLQ
 
 
 1 /*by SilverN*/ 2 #include<algorithm> 3 #include<iostream> 4 #include<cstring> 5 #include<cstdio> 6 #include<cmath> 7 using namespace std; 8 const int mxn=1200; 9 int t[mxn][mxn];10 int n,m;11 int lowbit(int x){return x&-x;}12 int an;13 void add(int x,int y,int v){14     while(x<=n){15         int tmp=y;16         while(tmp<=n){ t[x][tmp]+=v; tmp+=lowbit(tmp);}17         x+=lowbit(x);18     }19 }20 int sum(int x,int y){21     int res=0;22     while(x){23         int tmp=y;24         while(tmp){    res+=t[x][tmp];     tmp-=lowbit(tmp);}25         x-=lowbit(x);26     }27     return res;28 }29 int ask(int x1,int y1,int x2,int y2){30     return sum(x2,y2)+sum(x1-1,y1-1)-sum(x2,y1-1)-sum(x1,y2-1);31 }32 int main(){33     int T;34     scanf("%d",&T);35     int i,j;36     char ch[5];37     int x1,y1,x2,y2;38     while(T--){39         memset(t,0,sizeof t);40         scanf("%d%d",&n,&m);41         an=n+5;42         for(i=1;i<=m;i++){43             scanf("%s",ch);44             if(ch[0]==C){45                 scanf("%d%d%d%d",&x1,&y1,&x2,&y2);46                 add(x1,y1,1);47                 add(x1,y2+1,-1);48                 add(x2+1,y1,-1);49                 add(x2+1,y2+1,1);50             }51             else{52                 scanf("%d%d",&x1,&y1);53                 printf("%d\n",sum(x1,y1)%2);54             }55         }56         printf("\n");57     }58     return 0;59 }

 

POJ2155 Matrix