首页 > 代码库 > Codeforces Round #270(活用prim算法)

Codeforces Round #270(活用prim算法)

D. Design Tutorial: Inverse the Problem
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

There is an easy way to obtain a new task from an old one called "Inverse the problem": we give an output of the original task, and ask to generate an input, such that solution to the original problem will produce the output we provided. The hard task of Topcoder Open 2014 Round 2C, InverseRMQ, is a good example.

Now let‘s create a task this way. We will use the task: you are given a tree, please calculate the distance between any pair of its nodes. Yes, it is very easy, but the inverse version is a bit harder: you are given an n?×?n distance matrix. Determine if it is the distance matrix of a weighted tree (all weights must be positive integers).

Input

The first line contains an integer n (1?≤?n?≤?2000) — the number of nodes in that graph.

Then next n lines each contains n integers di,?j (0?≤?di,?j?≤?109) — the distance between node i and node j.

Output

If there exists such a tree, output "YES", otherwise output "NO".

Sample test(s)
input
3
0 2 7
2 0 9
7 9 0
output
YES
input
3
1 2 7
2 0 9
7 9 0
output
NO
input
3
0 2 2
7 0 9
7 9 0
output
NO
input
3
0 1 1
1 0 1
1 1 0
output
NO
input
2
0 0
0 0
output
NO
Note

In the first example, the required tree exists. It has one edge between nodes 1 and 2 with weight 2, another edge between nodes 1 and 3 with weight 7.

In the second example, it is impossible because d1,?1 should be 0, but it is 1.

In the third example, it is impossible because d1,?2 should equal d2,?1.

这题给出两个点的距离,问你可以不可以由这些点组成一棵树,我们首先构造一个最小生成树,然后比较各各点之间的距离是否与题目给出的距离相等,可以用dfs搜索整张图的每两个点之间的距离.下面给的做法非dfs做的,用一个数组f[][],记录x,y两点之间的距离,算距离的时候是通过目前点的前驱找,也就是说需要一个数组记录前驱,这样就可以不用dfs了,直接可以算.看完代码就明白了.....

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 2010;
const int INF = 0x3f3f3f3f;
int graph[maxn][maxn];
int prior[maxn];
int visit[maxn];
int dis[maxn];
int f[maxn][maxn];
int n;
bool check()
{
    for(int i = 0; i < n; i++)
    {
        dis[i] = INF;
        if(graph[i][i] != 0) return false;
        for(int j = i+1 ; j < n; j++)
        {
            if(graph[i][j] != graph[j][i] || graph[i][j] == 0) return false;
        }
    }

    memset(visit,0,sizeof(visit));
    memset(prior,-1,sizeof(prior));
    memset(f,0,sizeof(f));
    int cent = n;
    dis[0]=0;
    while(cent--)//循环n次是因为要初始化
    {

        int min = -1;
        for(int i = 0; i < n; i++)
        {
            if(!visit[i] && (min == -1 || dis[i] < dis[min]))
            {
                min = i;
            }
        }
        for(int i = 0; i < n; i++)//在prim算法里面增加这层循环里面的内容算距离
        {
            if(visit[i])//必须是已经访问过的点,才能算距离
            {
                f[i][min] = f[min][i] = f[i][prior[min]] + dis[min];
            }
        }
        visit[min] = true;
        for(int i = 0; i < n; i++)
        {
            if(dis[i] > graph[min][i] )
            {
                dis[i] = graph[min][i];
                prior[i] = min;//记录前驱
            }
        }
    }

    for(int i = 0; i < n; i++)
    {
        for(int j = 0 ; j < n; j++)
        {
            if(f[i][j] != graph[i][j])
            {
                return false;
            }
        }
    }
      return true;
}
int main()
{
#ifdef xxz
    freopen("in","r",stdin);
#endif // xxz
    while(cin>>n)
    {
        for(int i = 0; i < n; i++)
            for(int j = 0; j < n; j++)
            {
                cin>>graph[i][j];
            }

        if(check()) cout<<"YES"<<endl;
        else cout<<"NO"<<endl;
    }
    return 0;
}




Codeforces Round #270(活用prim算法)