首页 > 代码库 > poj 2773(容斥原理)
poj 2773(容斥原理)
容斥原理入门题吧。
Happy 2006
Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 9798 | Accepted: 3341 |
Description
Two positive integers are said to be relatively prime to each other if the Great Common Divisor (GCD) is 1. For instance, 1, 3, 5, 7, 9...are all relatively prime to 2006.
Now your job is easy: for the given integer m, find the K-th element which is relatively prime to m when these elements are sorted in ascending order.
Now your job is easy: for the given integer m, find the K-th element which is relatively prime to m when these elements are sorted in ascending order.
Input
The input contains multiple test cases. For each test case, it contains two integers m (1 <= m <= 1000000), K (1 <= K <= 100000000).
Output
Output the K-th element in a single line.
Sample Input
2006 12006 22006 3
Sample Output
135
Source
POJ Monthly--2006.03.26,static
#include <iostream>#include <stdio.h>#include <string.h>#include <math.h>#include <algorithm>#include <string>#include <queue>#include <stdlib.h>using namespace std;int m,k;int mark[1001000];int save[1001000];int pcnt;int g[100100];long long int sum;int cnt;void getprime(){ //1不是素数 for(int i=2;i<=1000000;i++) { if(mark[i]==1) continue; save[pcnt++]=i; for(int j=i;j<=1000000;j+=i) mark[j]=1; }}void dfs(int n,long long num,int s,long long int key){ if(n==0) { sum += key/num; return ; } if(s>=cnt) return ; for(int i=s;i<cnt;i++) { if(num*g[i]>key) continue; else dfs(n-1,num*g[i],i+1,key); }}long long int fuc(long long int x){ if(x==1) return 1; long long ans=0; int sign=0; for(int i=1;i<=cnt;i++) { sum=0; if(sign==0) { dfs(i,1,0,x); ans+=sum; } else { dfs(i,1,0,x); ans-=sum; } sign=sign^1; } return x-ans;//这里面应该不会出现负数吧}int main(){ getprime(); while(scanf("%d%d",&m,&k)!=EOF) { //然后就是分解一个数了 cnt=0; for(int i=2;i<=m;i++) { int flag=0; while(m%i==0) { if(flag==0) { g[cnt++]=i; } flag=1; m/=i; } } if(m!=1) g[cnt++]=m; //然后就是容斥原理 int b=0,d=1000000000; while(b<d) { int mid=(b+d)/2; int key=fuc(mid); if(key>=k) d=mid; else b=mid+1; } printf("%d\n",b); } return 0;}
poj 2773(容斥原理)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。