首页 > 代码库 > 平衡树(splay)

平衡树(splay)

求区间最大值模板

  1 struct node{
  2     int f[maxn];//父亲结点
  3     int ch[maxn][2];//左右孩子
  4     int key[maxn];//结点i代表的数字
  5     int cnt[maxn];//结点i出现的次数,也可以为全值。平衡树没有相同值的结点,所以如果出现了相同值时,cnt[i]++,或者cnt[i] += key[i]
  6     int siz[maxn];//包括i的子树的大小
  7     int val[maxn];
  8     int Max[maxn];
  9     int add[maxn];
 10     bool rev[maxn];
 11 
 12     int sz;//整棵子树的大小
 13     int root;//树根
 14     node(){
 15         sz = root = 0;
 16     }
 17     inline void Clear(int x){//清零,一般用于删除之后
 18         ch[x][0] = ch[x][1] = f[x] = cnt[x] = key[x] = siz[x] = 0;
 19     }
 20 
 21     inline int Get(int x){//用于判断左孩子还是右孩子
 22         return ch[f[x]][1] == x;
 23     }
 24 
 25     inline void Up(int x){//更新当前点的值,一般用于修改之后
 26         if(x){
 27             siz[x] = cnt[x];
 28             if(ch[x][0]) siz[x] += siz[ch[x][0]];
 29             if(ch[x][1]) siz[x] += siz[ch[x][1]];
 30         }
 31     }
 32     ///boss 来了
 33     inline void Rotate(int x){
 34         int fa = f[x];
 35         int fafa = f[fa];
 36         int k = Get(x);//判断是左孩子还是右孩子
 37         ch[fa][k] = ch[x][k^1];  f[ch[fa][k]] = fa;
 38         f[fa] = x;  ch[x][k^1] = fa;
 39         f[x] = fafa;
 40         if(fafa){
 41             ch[fafa][ch[fafa][1]==fa]=x;
 42         }
 43         pushUp(fa);
 44         Up(fa);
 45         Up(x);
 46     }
 47 
 48     inline void Splay(int x,int goal){//将x旋转到goal,goal为0表示旋转到根
 49         if(x == goal) return;
 50         while(f[x] != goal){
 51             int y = f[x],z =f[y];
 52             pushDown(z),pushDown(y),pushDown(x);
 53             Rotate(x);
 54         }
 55         pushUp(x);
 56         if(goal == 0) root = x;
 57     }
 58 
 59     inline void Insert(int v){//插入一个值为V的点
 60         if(root == 0){sz++;ch[sz][0]=ch[sz][1]=f[sz]=0;key[sz]=v;cnt[sz]=1;siz[sz]=1;root=sz;return;}
 61         int now = root,fa = 0;
 62         while(1){
 63             if (key[now] == v){
 64                 cnt[now]++;
 65                 Up(now);
 66                 Up(fa);
 67                 Splay(now,0);
 68                 break;
 69             }
 70             fa = now;
 71             now = ch[now][key[now]<v];
 72             if(now == 0){
 73                 sz++;
 74                 ch[sz][0] = ch[sz][1] = 0;
 75                 key[sz] = v; siz[sz] = 1;
 76                 cnt[sz] = 1; f[sz] = fa;
 77                 ch[fa][key[fa]<v] = sz;
 78                 Up(fa);
 79                 Splay(sz,0);
 80                 break;
 81             }
 82         }
 83     }
 84 
 85     inline int Find(int v){//查找值为v的点的排名,就是第几大
 86         int ans = 0,now = root;
 87         while(1){
 88             if(v < key[now]){
 89                 now = ch[now][0];
 90             }
 91             else{
 92                 ans += (ch[now][0] ? siz[ch[now][0]] : 0);
 93                 if(v == key[now]){
 94                     Splay(now,0);
 95                     return ans + 1;
 96                 }
 97                 ans += cnt[now];
 98                 now = ch[now][1];
 99             }
100         }
101     }
102 
103     inline int Findx(int x){//z找到排名为x的点的值
104         int now = root;
105         while(1){
106             if(ch[now][0] && x <= siz[ch[now][0]])
107                 now = ch[now][0];
108             else{
109                 int temp = (ch[now][0] ? siz[ch[now][0]] : 0) + cnt[now];
110                 if( x <= temp )
111                     return key[now];
112                 x -= temp;
113                 now = ch[now][1];
114             }
115         }
116     }
117     ///划重点!  求x的前驱(后继),前驱(后继)定义为小于(大于)x,且最大(最小)的数
118     ///先对x进行Insert操作,然后对于前驱后继对应pre与next,获得结果后记得把x ,Del掉!!!很关键
119     inline int Pre(){//前驱
120         int now = ch[root][0];
121         while(ch[now][1]) now = ch[now][1];
122         return now;
123     }
124 
125     inline int Next(){//后继
126         int now = ch[root][1];
127         while(ch[now][0]) now = ch[now][0];
128         return now;
129     }
130 
131     inline void Del(int x){//删除值为x的点
132         int whatever = Find(x);
133         if(cnt[root] > 1){cnt[root]--;return;}
134         if(!ch[root][0] && !ch[root][1]) {Clear(root),root=0;return;}
135         if(!ch[root][0]){
136             int oldroot = root;
137             root = ch[root][1];
138             f[root]=0;
139             Clear(oldroot);
140             return;
141         }
142         else if(!ch[root][1]){
143             int oldroot = root;
144             root = ch[root][0];
145             f[root]=0;
146             Clear(oldroot);
147             return;
148         }
149         int leftbig = Pre(),oldroot = root;
150         Splay(leftbig,0);
151         f[ch[oldroot][1]] = root;
152         ch[root][1] = ch[oldroot][1];
153         Clear(oldroot);
154         Up(root);
155         return;
156     }
157 
158     void pushUp(int x){
159         Max[x] = val[x];
160         siz[x] = cnt[x];
161         if(ch[x][0]){
162             Max[x] = max(Max[x],Max[ch[x][0]]);
163             siz[x] += siz[ch[x][0]];
164         }
165         if(ch[x][1]){
166             Max[x] = max(Max[x],Max[ch[x][1]]);
167             siz[x] += siz[ch[x][1]];
168         }
169     }
170 
171     void pushDown(int x){
172         if(x == 0) return;
173         if(add[x]){
174             if(ch[x][0]){
175                 val[ch[x][0]] += add[x];
176                 Max[ch[x][0]] += add[x];
177                 add[ch[x][0]] += add[x];
178             }
179             if(ch[x][1]){
180                 val[ch[x][1]] += add[x];
181                 Max[ch[x][1]] += add[x];
182                 add[ch[x][1]] += add[x];
183             }
184             add[x] = 0;
185         }
186         if(rev[x]){
187             if(ch[x][0]) rev[ch[x][0]] ^= 1;
188             if(ch[x][1]) rev[ch[x][1]] ^= 1;
189             swap(ch[x][0],ch[x][1]);
190             rev[x] = 0;
191         }
192     }
193 
194     int Select(int pos){//查找pos的位置
195         int u = root;
196         pushDown(u);
197         while(siz[ch[u][0]] != pos){
198             if(pos < siz[ch[u][0]]) u = ch[u][0];
199             else{
200                 pos -= siz[ch[u][0]] + 1;
201                 u = ch[u][1];
202             }
203             pushDown(u);
204         }
205         return u;
206     }
207 
208     void Update(int L,int R,int Val){//l,r的值 + val
209         int u = Select(L-1), v =Select(R+1);
210         Splay(u,0);
211         Splay(v,u);
212         Max[ch[v][0]] += Val;
213         val[ch[v][0]] += Val;
214         add[ch[v][0]] += Val;
215     }
216 
217     void Reverse(int L,int R){//翻转
218         int u = Select(L-1), v =Select(R+1);
219         Splay(u,0);
220         Splay(v,u);
221         rev[ch[v][0]] ^= 1;
222     }
223 
224     int Query(int L,int R){//查询l,r的最大值
225         int u = Select(L-1), v =Select(R+1);
226         Splay(u,0);
227         Splay(v,u);
228         return Max[ch[v][0]];
229     }
230 
231     int Build(int L,int R){//建一棵空树
232         if(L > R) return 0;
233         if(L == R){
234             return L;
235         }
236         int mid = (L+R)>>1,sL,sR;
237         ch[mid][0] = sL = Build(L,mid-1);
238         ch[mid][1] = sR = Build(mid+1,R);
239         f[sL] = f[sR] = mid;
240         pushUp(mid);
241         return mid;
242     }
243 
244     void ini(int i,int Val){
245         val[i] = Max[i] = Val;
246         siz[i] = 1;
247         add[i] = rev[i] = ch[i][0] = ch[i][1] = 0;
248         cnt[i] = 1;
249     }
250 
251     void Init(int n){//初始化  相当于建树
252         ini(0,-INF),ini(1,-INF),ini(n+2,-INF);
253         for(int i=2;i<=n+1;i++) ini(i,0);
254         root = Build(1,n+2),f[root] = 0;
255         f[0] = 0; ch[0][1] = root; siz[0] = 0;
256     }
257 }splay;

 

平衡树(splay)