首页 > 代码库 > HDU——T 1711 Number Sequence

HDU——T 1711 Number Sequence

http://acm.hdu.edu.cn/showproblem.php?pid=1711

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 29129    Accepted Submission(s): 12254


Problem Description
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
 

 

Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
 

 

Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
 

 

Sample Input
213 51 2 1 2 3 1 2 3 1 3 2 1 21 2 3 1 313 51 2 1 2 3 1 2 3 1 3 2 1 21 2 3 2 1
 

 

Sample Output
6-1
 
模板练习题
 1 #include <algorithm> 2 #include <cstdio> 3  4 using namespace std; 5  6 const int N(1000000+5); 7 const int M(10000+626); 8 int l1,l2,a[N],b[N],p[N]; 9 10 inline void Get_next()11 {12     for(int j=0,i=2;i<=l2;i++)13     {14         if(j>0&&b[i]!=b[j+1]) j=p[j];15         if(b[i]==b[j+1]) j++;16         p[i]=j;17     }18 }19 inline void kmp()20 {21     for(int j=0,i=1;i<=l1;i++)22     {23         if(j>0&&a[i]!=b[j+1]) j=p[j];24         if(a[i]==b[j+1]) j++;25         if(j==l2)26         {27             printf("%d\n",i-j+1);28             return ;29         }30     }31     puts("-1");32 }33 34 int main()35 {36     int t;scanf("%d",&t);37     for(;t--;)38     {39         scanf("%d%d",&l1,&l2);40         for(int i=1;i<=l1;i++) scanf("%d",a+i);41         for(int i=1;i<=l2;i++) scanf("%d",b+i);42         Get_next();43         kmp();44     }45     return 0;46 }

 

HDU——T 1711 Number Sequence