首页 > 代码库 > 线段树の二 区间乘+区间加

线段树の二 区间乘+区间加

具体就不解释了,看上一篇文章

放代码

注意点:!!!!

注意运算符优先级

比如:

a*=b%p 是b先mod p再与a相乘

参见:https://baike.baidu.com/item/%E8%BF%90%E7%AE%97%E7%AC%A6%E4%BC%98%E5%85%88%E7%BA%A7/4752611?fr=aladdin

/*******************************线段树V2.0支持区间加、区间乘、区间和查询********************************/#include<iostream>#include<cstdio>#include<cstring>#define N 1000010using namespace std;struct node{	int left;//节点所代表区间左端	int right;//节点所代表区间右端	long long sum;//区间和	long long add;//区间加Lazy标记	long long mult;//区间乘Lazy标记 	node(){mult=1;}} tree[N];long long a[N];int n,m,p;//n:区间大小 m:操作次数 p:取模 //left:当前区间左端 right:当前区间右端 node:当前节点void Build_Tree(int left,int right,int node){	tree[node].left=left;	tree[node].right=right;	if(left==right) tree[node].sum=a[left];	else	{		int mid=(left+right)>>1;		Build_Tree(left,mid,node<<1);		Build_Tree(mid+1,right,node<<1|1);		tree[node].sum=(tree[node<<1].sum+tree[node<<1|1].sum)%p;	}}//标记下放 node:当前节点void Push_Down(int node){	if(tree[node].add==0&&tree[node].mult==1) return;	tree[node<<1].mult=tree[node<<1].mult*tree[node].mult%p;	tree[node<<1|1].mult=tree[node<<1|1].mult*tree[node].mult%p;	tree[node<<1].add=tree[node<<1].add*tree[node].mult%p;	tree[node<<1|1].add=tree[node<<1|1].add*tree[node].mult%p;	tree[node<<1].sum=tree[node<<1].sum*tree[node].mult%p;	tree[node<<1|1].sum=tree[node<<1|1].sum*tree[node].mult%p;	tree[node].mult=1;	tree[node<<1].add=(tree[node<<1].add+tree[node].add)%p;	tree[node<<1|1].add=(tree[node<<1|1].add+tree[node].add)%p;	tree[node<<1].sum=(tree[node<<1].sum+tree[node].add*(tree[node<<1].right-tree[node<<1].left+1))%p;	tree[node<<1|1].sum=(tree[node<<1|1].sum+tree[node].add*(tree[node<<1|1].right-tree[node<<1|1].left+1))%p;	tree[node].add=0;}//上推 node:当前节点void Push_Up(int node){	tree[node].sum=(tree[node<<1].sum+tree[node<<1|1].sum)%p;}//区间加操作 left:操作区间左端点 right:操作区间右端点 node:当前节点 value:操作值void Add_Range(int left,int right,int node,long long value){	if(tree[node].left>=left&&tree[node].right<=right)	{		tree[node].add+=value%p;		tree[node].sum+=value*(tree[node].right-tree[node].left+1)%p;		return;	}	Push_Down(node);	int mid=(tree[node].left+tree[node].right)>>1;	if(left<=mid) Add_Range(left,right,node<<1,value);	if(right>mid) Add_Range(left,right,node<<1|1,value);	Push_Up(node);}//区间乘操作 left:操作区间左端点 right:操作区间右端点 node:当前节点 value:操作值void Mult_Range(int left,int right,int node,long long value){	if(tree[node].left>=left&&tree[node].right<=right)	{		tree[node].mult=tree[node].mult*value%p;		tree[node].add=tree[node].add*value%p;		tree[node].sum=tree[node].sum*value%p;		return;	}	Push_Down(node);	int mid=(tree[node].left+tree[node].right)>>1;	if(left<=mid) Mult_Range(left,right,node<<1,value);	if(right>mid) Mult_Range(left,right,node<<1|1,value);	Push_Up(node);}//区间和查询 left:查询区间左端点 right:查询区间右端点 node:当前节点long long Query_Sum(int left,int right,int node){	if(tree[node].left>right||tree[node].right<left) 	return 0;	Push_Down(node);	if(tree[node].left>=left&&tree[node].right<=right) 	return tree[node].sum%p;	return (Query_Sum(left,right,node*2)+Query_Sum(left,right,node*2+1))%p;}int main(){	cin>>n>>m>>p;	for(int i=1; i<=n; i++) cin>>a[i];	Build_Tree(1,n,1);	while(m--)	{		int x,y,c;		cin>>c>>x>>y;		if(c==1)//区间乘操作 		{			long long v;			cin>>v;			Mult_Range(x,y,1,v);		}		if(c==2)//区间加操作		{			long long v;			cin>>v;			Add_Range(x,y,1,v);		}		if(c==3)//查询		cout<<Query_Sum(x,y,1)<<endl;	}	return 0;}

  

线段树の二 区间乘+区间加