首页 > 代码库 > UVA - 11426 GCD - Extreme (II) (欧拉函数)
UVA - 11426 GCD - Extreme (II) (欧拉函数)
题意:,给定N,求G。
分析:
1、G = f(2) + f(3) + ... + f(n).其中,f(n) = gcd(1, n) + gcd(2, n) + ... + gcd(n - 1, n).
2、设g(n, i)表示gcd(x, n) = i的个数(x < n),则f(n) = sum{i * g(n, i)}.
3、g(n, i)的求法:
(1)因为gcd(x, n) = i,可得gcd(x / i, n / i) = 1,且x / i < n / i。
(2)因为gcd(x / i, n / i) = 1,所以x / i 与 n / i 互质,即对于n / i来说,比它小且与它互质的数的个数为euler[n / i],也就是x / i的个数,也就是g(n, i)的个数。
4、所以f(n) = sum{i * euler[n / i]},枚举质因子即可。
#include<cstdio>#include<cstring>#include<cstdlib>#include<cctype>#include<cmath>#include<iostream>#include<sstream>#include<iterator>#include<algorithm>#include<string>#include<vector>#include<set>#include<map>#include<stack>#include<deque>#include<queue>#include<list>#define lowbit(x) (x & (-x))const double eps = 1e-8;inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1;}typedef long long LL;typedef unsigned long long ULL;const int INT_INF = 0x3f3f3f3f;const int INT_M_INF = 0x7f7f7f7f;const LL LL_INF = 0x3f3f3f3f3f3f3f3f;const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};const int MOD = 1e9 + 7;const double pi = acos(-1.0);const int MAXN = 4000001 + 10;const int MAXT = 250000 + 10;using namespace std;int euler[MAXN];LL ans[MAXN];void init(){ for(int i = 1; i < MAXN; ++i){ euler[i] = i; } for(int i = 2; i < MAXN; ++i){ if(euler[i] == i){ for(int j = i; j < MAXN; j += i){ euler[j] = euler[j] / i * (i - 1); } } } for(int i = 1; i < MAXN; ++i){ for(int j = i + i; j < MAXN; j += i){ ans[j] += (LL)euler[j / i] * i; } } for(int i = 3; i < MAXN; ++i){ ans[i] += ans[i - 1]; }}int main(){ init(); int N; while(scanf("%d", &N) == 1){ if(N == 0) return 0; cout << ans[N] << endl; } return 0;}
UVA - 11426 GCD - Extreme (II) (欧拉函数)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。