首页 > 代码库 > 洗牌算法

洗牌算法

<style>p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px "Microsoft YaHei"; color: #3333ff } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 15.0px "Microsoft YaHei"; color: #555555 } p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 15.0px "Microsoft YaHei"; color: #555555; min-height: 20.0px } p.p4 { margin: 0.0px 0.0px 0.0px 0.0px; font: 15.0px "Microsoft YaHei"; color: #999999 } p.p5 { margin: 0.0px 0.0px 0.0px 0.0px; font: 9.0px Verdana; color: #0d89cf } p.p6 { margin: 0.0px 0.0px 0.0px 0.0px; font: 9.0px Verdana; color: #c0c0c0; min-height: 11.0px } p.p7 { margin: 0.0px 0.0px 0.0px 0.0px; font: 9.0px Verdana; color: #c0c0c0; background-color: #f8f8f8; min-height: 11.0px } p.p11 { margin: 0.0px 0.0px 0.0px 0.0px; font: 15.0px "Microsoft YaHei"; color: #999999; min-height: 20.0px } p.p12 { margin: 0.0px 0.0px 0.0px 0.0px; font: 15.0px "Microsoft YaHei"; color: #ff2500 } p.p13 { margin: 0.0px 0.0px 0.0px 0.0px; font: 15.0px "Microsoft YaHei"; color: #0d89cf } li.li8 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Courier New"; color: #5c5c5c } li.li9 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Courier New"; color: #5c5c5c; background-color: #f8f8f8 } li.li10 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Courier New"; color: #5c5c5c; background-color: #f8f8f8 } li.li14 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Courier New"; color: #5c5c5c } span.s1 { } span.s2 { color: #3333ff } span.s3 { color: #c0c0c0; background-color: #f8f8f8 } span.s4 { background-color: #f8f8f8 } span.s5 { } span.s6 { color: #0433ff } span.s7 { color: #006699 } span.s8 { color: #2f8b57 } span.s9 { } span.s10 { } span.s11 { font: 15.0px "Microsoft YaHei"; color: #0d89cf } span.s12 { color: #006699 } ol.ol1 { list-style-type: decimal }</style>

1. 问题描述

洗牌算法是常见的随机问题;它可以抽象成:得到一个M以内的所有自然数的随机顺序数组

常见问题描述:

1.将自然数1 ~ 100随机插入到一个大小为100的数组,无重复元素

2. 1 ~ 52张扑克牌重新洗牌

 

什么是好的洗牌算法:

洗牌之后,如果能够保证每一个数出现在所有位置上的概率是相等的,那么这种算法是符合要求的;这在个前提下,尽量降低时间和空间复杂度。

 

2. 算法实现

第一个算法:

随机抽出一张牌,检查这种牌是否被抽取过,如果已经被抽取过,则重新抽取,知道找到没有被抽取的牌;重复该过程,知道所有的牌都被抽取到。

这种算法是比较符合大脑的直观思维,这种算法有两种形式:

1. 每次随机抽取后,将抽取的牌拿出来,则此时剩余的牌为(N-1),这种算法避免了重复抽取,但是每次抽取一张牌后,都有一个删除操作,需要在原始数组中删除随机选中的牌(可使用Hashtable实现)

2. 每次随机抽取后,将抽取的符合要求的牌做好标记,但并不删除;与1相比,省去了删除的操作,但增加了而外的存储标志为的空间,同时导致可每次可能会抽取之前抽过的牌

这种方法的时间/空间复杂度都不好。

 

第二个算法:

每次随机抽出两张牌交换,交换一定次数后结束:

 

[cpp] view plain copy

 

 

  1. <span style="color:#999999;">void shuffle(int* array, int len)  
  2. {  
  3.     const int suff_time = len;  
  4.       
  5.     for (int idx = 0; i < suff_time; i++)  
  6.     {  
  7.         int i = rand() % len;  
  8.         int j = rand() % len;  
  9.           
  10.         int temp = array[i];  
  11.         array[i] = array[j];  
  12.         array[j] = temp;  
  13.     }  
  14. }</span>  

 

这是一个常见的洗牌算法; 但是如何确定一个合适的交换次数?

 

假设交换了m此,则某张牌始终没有被交换的概率为 (n-2)/n * (n-2)/n, ... ...* (n-2)/n = ((n-2)/n)^m;我们希望其概率小于摸个值,求出m的解.假设概率小于1/1000,对于n=52,m大概为176,实际上远远大于数组的长度.

 

第三个算法:

Fisher–Yates shuffle算法

该算法每次随机选取一个数,然后将该数与数组中最后(或最前)的元素相交换(如果随机选中的是最后/最前的元素,则相当于没有发生交换);然后缩小选取数组的范围,去掉最后的元素,即之前随机抽取出的数。重复上面的过程,直到剩余数组的大小为1,即只有一个元素时结束:

 

[cpp] view plain copy

 

 

  1. void shuffle(int* array, int len)  
  2. {  
  3.     int i = len;  
  4.     int j = 0;  
  5.     int temp= = 0;  
  6.       
  7.     if (i == 0)  
  8.     {  
  9.         return;  
  10.     }  
  11.       
  12.     while (--i)  
  13.     {  
  14.         j = rand() % (i+1);  
  15.         temp = array[i];  
  16.         array[i] = array[j];  
  17.         array[j] = temp;  
  18.     }  
  19. }  

 

该算法的数学证明请参照具体的论文或者博文;

 

该算法复杂度为O(n),且各元素随机概率相等。

洗牌算法