首页 > 代码库 > POJ 3181 Dollar Dayz 01全然背包问题
POJ 3181 Dollar Dayz 01全然背包问题
01全然背包问题。
主要是求有多少种组合。二维dp做的人多了,这里使用一维dp就能够了。
一维的转换方程:dp[j] = dp[j-i] + dp[j];当中i代表重量,j代表当前背包容量。
意思就是dp[j-i] 代表j-i背包重量的时候最多的组合数,那么假设到了背包容量为j的时候,就是能够把第i个物品装进背包,那么就有dp[j-i]种装法,
假设没有i物品之前。那么容量为j的时候组合数是dp[j]。
那么当有i物品,且容量为j的时候,那么组合数就是dp[j-i] + dp[j];
二维能够转为一维dp的特点:
1 不须要利用当前行之前的数据; 就是填表的时候是先填写列,然后填写下一行;当填写当前行的时候,仅仅须要一行记录数据就可以;当前列的数据能够马上读出,马上覆盖。
2 或者能够逆向填表;当须要利用当前行前几列的数据的时候,能够考虑从后面列開始填表
只是本题还多了一个知识点。就是须要处理大数,使用一般数组处理应该也是能够的,只是依据本题特点。能够仅仅使用两个long long存储结果。
#include <stdio.h> #include <vector> #include <string.h> #include <algorithm> #include <iostream> #include <string> #include <limits.h> #include <stack> #include <queue> #include <set> #include <map> using namespace std; const int MAX_N = 1001; int N, K; long long hi[MAX_N], lo[MAX_N]; const long long MOD = 1E18; int main() { while (~scanf("%d %d", &N, &K)) { memset(hi, 0LL, sizeof(long long) * (N+1)); memset(lo, 0LL, sizeof(long long) * (N+1)); lo[0] = 1LL; for (int i = 1; i <= K; i++) { for (int j = i; j <= N; j++) { hi[j] = hi[j-i] + hi[j]; hi[j] += (lo[j-i] + lo[j]) / MOD; lo[j] = (lo[j-i] + lo[j]) % MOD; } } if (hi[N] > 0LL) printf("%I64d", hi[N]); printf("%I64d\n", lo[N]); } return 0; }
POJ 3181 Dollar Dayz 01全然背包问题
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。