首页 > 代码库 > KMP算法中的next[]数组
KMP算法中的next[]数组
KMP算法最难懂的就是next[]数组的求法。
用一个例子来解释,下面是一个子串的next数组的值,可以看到这个子串的对称程度很高,所以next值都比较大。
位置i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
前缀next[i] | 0 | 0 | 0 | 0 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 4 | 0 |
子串 | a | g | c | t | a | g | c | a | g | c | t | a | g | c | t | g |
(1)逐个查找对称串。
这个很简单,我们只要循环遍历这个子串,分别看前1个字符,前2个字符,3个... i个 最后到15个。
第1个a无对称,所以对称程度0
前两个ag无对称,所以也是0
依次类推前面0-4都一样是0
前5个agcta,可以看到这个串有一个a相等,所以对称程度为1前6个agctag,看得到ag和ag对成,对称程度为2
这里要注意了,想是这样想,编程怎么实现呢?
只要按照下面的规则:
a、当前面字符的前一个字符的对称程度为0的时候,只要将当前字符与子串第一个字符进行比较。这个很好理解啊,前面都是0,说明都不对称了,如果多加了一个字符,要对称的话最多是当前的和第一个对称。比如agcta这个里面t的是0,那么后面的a的对称程度只需要看它是不是等于第一个字符a了。
b、按照这个推理,我们就可以总结一个规律,不仅前面是0呀,如果前面一个字符的next值是1,那么我们就把当前字符与子串第二个字符进行比较,因为前面的是1,说明前面的字符已经和第一个相等了,如果这个又与第二个相等了,说明对称程度就是2了。有两个字符对称了。比如上面agctag,倒数第二个a的next是1,说明它和第一个a对称了,接着我们就把最后一个g与第二个g比较,又相等,自然对称成都就累加了,就是2了。
c、按照上面的推理,如果一直相等,就一直累加,可以一直推啊,推到这里应该一点难度都没有吧,如果你觉得有难度说明我写的太失败了。
当然不可能会那么顺利让我们一直对称下去,如果遇到下一个不相等了,那么说明不能继承前面的对称性了,这种情况只能说明没有那么多对称了,但是不能说明一点对称性都没有,所以遇到这种情况就要重新来考虑,这个也是难点所在。
(2)回头来找对称性
这里已经不能继承前面了,但是还是找对称成都嘛,最愚蠢的做法大不了写一个子函数,查找这个字符串的最大对称程度,怎么写方法很多吧,比如查找出所有的当前字符串,然后向前走,看是否一直相等,最后走到子串开头,当然这个是最蠢的,我们一般看到的KMP都是优化过的,因为这个串是有规律的。
在这里依然用上面表中一段来举个例子:
位置i=0到14如下,我加的括号只是用来说明问题:
(a g c t a g c )( a g c t a g c) t
我们可以看到这段,最后这个t之前的对称程度分别是:1,2,3,4,5,6,7,倒数第二个c往前看有7个字符对称,所以对称为7。但是到最后这个t就没有继承前面的对称程度next值,所以这个t的对称性就要重新来求。
这里首要要申明几个事实
1、t 如果要存在对称性,那么对称程度肯定比前面这个c 的对称程度小,所以要找个更小的对称,这个不用解释了吧,如果大那么t就继承前面的对称性了。
2、要找更小的对称,必然在对称内部还存在子对称,而且这个t必须紧接着在子对称之后。
附上代码
#include<iostream> #include<algorithm> #include <vector> #include<string.h> #include<ctype.h> #include<math.h> using namespace std; void fun(); int main() { fun(); return 0; } void fun() { int i,j,nextarr[1000]; char str1[1000]; gets(str1); nextarr[0]=-1; j=-1; i=0; while(i < strlen(str1)-1) { if(j == -1 || str1[i] == str1[j]) { i++; j++; nextarr[i] = j; } else { j = nextarr[j]; } } for(i=1;i<strlen(str1);i++) cout<<nextarr[i]<<" "; }
KMP算法中的next[]数组