首页 > 代码库 > (转)二叉树基本操作(三)
(转)二叉树基本操作(三)
纸上谈兵: 树, 二叉树, 二叉搜索树
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!
树的特征和定义
树(Tree)是元素的集合。我们先以比较直观的方式介绍树。下面的数据结构是一个树:
树有多个节点(node),用以储存元素。某些节点之间存在一定的关系,用连线表示,连线称为边(edge)。边的上端节点称为父节点,下端称为子节点。树像是一个不断分叉的树根。
每个节点可以有多个子节点(children),而该节点是相应子节点的父节点(parent)。比如说,3,5是6的子节点,6是3,5的父节点;1,8,7是3的子节点, 3是1,8,7的父节点。树有一个没有父节点的节点,称为根节点(root),如图中的6。没有子节点的节点称为叶节点(leaf),比如图中的1,8,9,5节点。从图中还可以看到,上面的树总共有4个层次,6位于第一层,9位于第四层。树中节点的最大层次被称为深度。也就是说,该树的深度(depth)为4。
如果我们从节点3开始向下看,而忽略其它部分。那么我们看到的是一个以节点3为根节点的树:
三角形代表一棵树
再进一步,如果我们定义孤立的一个节点也是一棵树的话,原来的树就可以表示为根节点和子树(subtree)的关系:
上述观察实际上给了我们一种严格的定义树的方法:
1. 树是元素的集合。
2. 该集合可以为空。这时树中没有元素,我们称树为空树 (empty tree)。
3. 如果该集合不为空,那么该集合有一个根节点,以及0个或者多个子树。根节点与它的子树的根节点用一个边(edge)相连。
上面的第三点是以递归的方式来定义树,也就是在定义树的过程中使用了树自身(子树)。由于树的递归特征,许多树相关的操作也可以方便的使用递归实现。我们将在后面看到。
(上述定义来自"Data Structures and Algorithm Analysis in C, by Mark Allen Weiss"。 我觉得有一点不太严格的地方。如果说空树属于树,第三点应该是 “...以及0个和多个非空子树...” )
树的实现
树的示意图已经给出了树的一种内存实现方式: 每个节点储存元素和多个指向子节点的指针。然而,子节点数目是不确定的。一个父节点可能有大量的子节点,而另一个父节点可能只有一个子节点,而树的增删节点操作会让子节点的数目发生进一步的变化。这种不确定性就可能带来大量的内存相关操作,并且容易造成内存的浪费。
一种经典的实现方式如下:
树的内存实现
拥有同一父节点的两个节点互为兄弟节点(sibling)。上图的实现方式中,每个节点包含有一个指针指向第一个子节点,并有另一个指针指向它的下一个兄弟节点。这样,我们就可以用统一的、确定的结构来表示每个节点。
计算机的文件系统是树的结构,比如Linux文件管理背景知识中所介绍的。在UNIX的文件系统中,每个文件(文件夹同样是一种文件),都可以看做是一个节点。非文件夹的文件被储存在叶节点。文件夹中有指向父节点和子节点的指针(在UNIX中,文件夹还包含一个指向自身的指针,这与我们上面见到的树有所区别)。在git中,也有类似的树状结构,用以表达整个文件系统的版本变化 (参考版本管理三国志)。
文件树
二叉搜索树的C实现
二叉树(binary)是一种特殊的树。二叉树的每个节点最多只能有2个子节点:
二叉树
由于二叉树的子节点数目确定,所以可以直接采用上图方式在内存中实现。每个节点有一个左子节点(left children)和右子节点(right children)。左子节点是左子树的根节点,右子节点是右子树的根节点。
如果我们给二叉树加一个额外的条件,就可以得到一种被称作二叉搜索树(binary search tree)的特殊二叉树。二叉搜索树要求:每个节点都不比它左子树的任意元素小,而且不比它的右子树的任意元素大。
(如果我们假设树中没有重复的元素,那么上述要求可以写成:每个节点比它左子树的任意节点大,而且比它右子树的任意节点小)
二叉搜索树,注意树中元素的大小
二叉搜索树可以方便的实现搜索算法。在搜索元素x的时候,我们可以将x和根节点比较:
1. 如果x等于根节点,那么找到x,停止搜索 (终止条件)
2. 如果x小于根节点,那么搜索左子树
3. 如果x大于根节点,那么搜索右子树
二叉搜索树所需要进行的操作次数最多与树的深度相等。n个节点的二叉搜索树的深度最多为n,最少为log(n)。
下面是用C语言实现的二叉搜索树,并有搜索,插入,删除,寻找最大最小节点的操作。每个节点中存有三个指针,一个指向父节点,一个指向左子节点,一个指向右子节点。
(这样的实现是为了方便。节点可以只保存有指向左右子节点的两个指针,并实现上述操作。)
删除节点相对比较复杂。删除节点后,有时需要进行一定的调整,以恢复二叉搜索树的性质(每个节点都不比它左子树的任意元素小,而且不比它的右子树的任意元素大)。
- 叶节点可以直接删除。
- 删除非叶节点时,比如下图中的节点8,我们可以删除左子树中最大的元素(或者右树中最大的元素),用删除的节点来补充元素8产生的空缺。但该元素可能也不是叶节点,所以它所产生的空缺需要其他元素补充…… 直到最后删除一个叶节点。上述过程可以递归实现。
删除节点
删除节点后的二叉搜索树
C语言实现的代码:
#define _CRT_SECURE_NO_DEPRECATE /*取消scanf,printf不安全之类的错误提示*//* By Vamei *//* binary search tree */#include <stdio.h>#include <stdlib.h>typedef struct node *position;typedef int ElementTP;struct node { position parent; ElementTP element; position lchild; position rchild;};/* pointer => root node of the tree */typedef struct node *TREE;void print_sorted_tree(TREE); //中序遍历打印position find_min(TREE);position find_max(TREE);position find_value(TREE, ElementTP);position insert_value(TREE, ElementTP);ElementTP delete_node(position);void Inorder(position); //中续遍历左子树static int is_root(position);static int is_leaf(position);static ElementTP delete_leaf(position);static void insert_node_to_nonempty_tree(TREE, position);void main(void){ TREE tr; position np; //ElementTP element; tr = NULL; tr = insert_value(tr, 18); tr = insert_value(tr, 5); tr = insert_value(tr, 2); tr = insert_value(tr, 8); tr = insert_value(tr, 81); tr = insert_value(tr, 101); printf("Original:\n"); print_sorted_tree(tr); //Inorder(tr); //功能同上一行 np = find_value(tr, 8); if (np != NULL) { delete_node(np); printf("After deletion:\n"); print_sorted_tree(tr); }}/** print values of the tree in sorted order *相当于中序遍历 左 根 右*/void print_sorted_tree(TREE tr){ if (tr == NULL) return; print_sorted_tree(tr->lchild); printf("%d \n", tr->element); print_sorted_tree(tr->rchild);}/** search for minimum value* traverse lchild*/position find_min(TREE tr){ position np; np = tr; if (np == NULL) return NULL; while (np->lchild != NULL) { np = np->lchild; } return np;}/** search for maximum value* traverse rchild*/position find_max(TREE tr){ position np; np = tr; if (np == NULL) return NULL; while (np->rchild != NULL) { np = np->rchild; } return np;}/** search for value**/position find_value(TREE tr, ElementTP value){ if (tr == NULL) return NULL; if (tr->element == value) { return tr; } else if (value < tr->element) { return find_value(tr->lchild, value); } else { return find_value(tr->rchild, value); }}/** delete node np*/ElementTP delete_node(position np){ position replace; ElementTP element; if (is_leaf(np)) { return delete_leaf(np); } else { /* if a node is not a leaf, then we need to find a replacement */ replace = (np->lchild != NULL) ? find_max(np->lchild) : find_min(np->rchild); element = np->element; np->element = delete_node(replace); return element; }}/** insert a value into the tree* return root address of the tree*/position insert_value(TREE tr, ElementTP value) { position np; /* prepare the node */ np = (position)malloc(sizeof(struct node)); np->element = value; np->parent = NULL; np->lchild = NULL; np->rchild = NULL; if (tr == NULL) tr = np; else { insert_node_to_nonempty_tree(tr, np); } return tr;}void Inorder(position np) //中续遍历左子树 左 根 右{ if (np != NULL){ Inorder(np->lchild); printf("%d ", np->element); Inorder(np->rchild); }}//=============================================/** np is root?*/static int is_root(position np){ return (np->parent == NULL);}/** np is leaf?*/static int is_leaf(position np){ return (np->lchild == NULL && np->rchild == NULL);}/** if an element is a leaf,* then it could be removed with no side effect.*/static ElementTP delete_leaf(position np){ ElementTP element; position parent; element = np->element; parent = np->parent; if (!is_root(np)) { if (parent->lchild == np) { parent->lchild = NULL; //如果此叶子节点为左节点 } else { parent->rchild = NULL; //如果此叶子节点为右节点 } } free(np); return element;}/** insert a node to a non-empty tree* called by insert_value()*/static void insert_node_to_nonempty_tree(TREE tr, position np){ /* insert the node */ if (np->element <= tr->element) { if (tr->lchild == NULL) { /* then tr->lchild is the proper place */ tr->lchild = np; np->parent = tr; return; } else { insert_node_to_nonempty_tree(tr->lchild, np); } } else if (np->element > tr->element) { if (tr->rchild == NULL) { tr->rchild = np; np->parent = tr; return; } else { insert_node_to_nonempty_tree(tr->rchild, np); } }}
(转)二叉树基本操作(三)