首页 > 代码库 > 【SPOJ】1812. Longest Common Substring II(后缀自动机)

【SPOJ】1812. Longest Common Substring II(后缀自动机)

http://www.spoj.com/problems/LCS2/

发现了我原来对sam的理解的一个坑233

本题容易看出就是将所有匹配长度记录在状态上然后取min后再对所有状态取max。

但是不要忘记了一点:更新parent树的祖先。

为什么呢?首先如果子树被匹配过了,那么长度一定大于任意祖先匹配的长度(甚至有些祖先匹配长度为0!为什么呢,因为我们在匹配的过程中,只是找到一个子串,可能还遗漏了祖先没有匹配到,这样导致了祖先的记录值为0,那么在对对应状态去min的时候会取到0,这样就wa了。而且注意,如果匹配到了当前节点,那么祖先们一定都可以赋值为祖先的length!因为当前节点的length大于任意祖先。(

比如数据

acbbc
bc
ac

答案应该是1没错吧。如果没有更新祖先,那么答案会成0。

这个多想想就行了。

所以以后记住:对任意多串匹配时,凡是对同一个状态取值时,要注意当前状态的子树是否比当前状态记录的值优。

#include <cstdio>#include <cstring>#include <cmath>#include <string>#include <iostream>#include <algorithm>#include <queue>#include <set>#include <map>using namespace std;typedef long long ll;#define rep(i, n) for(int i=0; i<(n); ++i)#define for1(i,a,n) for(int i=(a);i<=(n);++i)#define for2(i,a,n) for(int i=(a);i<(n);++i)#define for3(i,a,n) for(int i=(a);i>=(n);--i)#define for4(i,a,n) for(int i=(a);i>(n);--i)#define CC(i,a) memset(i,a,sizeof(i))#define read(a) a=getint()#define print(a) printf("%d", a)#define dbg(x) cout << (#x) << " = " << (x) << endl#define error(x) (!(x)?puts("error"):0)#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<‘0‘||c>‘9‘; c=getchar()) if(c==‘-‘) k=-1; for(; c>=‘0‘&&c<=‘9‘; c=getchar()) r=r*10+c-‘0‘; return k*r; }struct sam {	static const int N=250005;	int c[N][26], l[N], f[N], root, last, cnt, mx[N], x[N];	sam() { cnt=0; root=last=++cnt; }	void add(int x) {		int now=last, a=++cnt; last=a;		l[a]=l[now]+1;		for(; now && !c[now][x]; now=f[now]) c[now][x]=a;		if(!now) f[a]=root;		else {			int q=c[now][x];			if(l[q]==l[now]+1) f[a]=q;			else {				int b=++cnt;				memcpy(c[b], c[q], sizeof c[q]);				l[b]=l[now]+1;				f[b]=f[q];				f[q]=f[a]=b;				for(; now && c[now][x]==q; now=f[now]) c[now][x]=b;			}		}	}	void build(char *s) {		int len=strlen(s);		rep(i, len) add(s[i]-‘a‘);		for1(i, 1, cnt) mx[l[i]]++;		for1(i, 1, len) mx[i]+=mx[i-1];		for1(i, 1, cnt) x[mx[l[i]]--]=i;		for1(i, 1, cnt) mx[i]=l[i];	}	void find(char *s) {		int now=root, t=0, len=strlen(s);		static int arr[N];		rep(i, len) {			int k=s[i]-‘a‘;			if(c[now][k]) ++t, now=c[now][k];			else {				while(now && !c[now][k]) now=f[now];				if(!now) t=0, now=root;				else t=l[now]+1, now=c[now][k];			}			arr[now]=max(arr[now], t);		}		for3(i, cnt, 1) {			t=x[i];			mx[t]=min(mx[t], arr[t]);			if(arr[t] && f[t]) arr[f[t]]=l[f[t]];			arr[t]=0;		}	}	int getans() {		int ret=0;		for1(i, 1, cnt) ret=max(ret, mx[i]);		return ret;	}}a;const int N=100005;char s[N];int main() {	scanf("%s", s);	a.build(s);	while(~scanf("%s", s)) a.find(s);	print(a.getans());	return 0;}

  

 


 

 

A string is finite sequence of characters over a non-empty finite set Σ.

In this problem, Σ is the set of lowercase letters.

Substring, also called factor, is a consecutive sequence of characters occurrences at least once in a string.

Now your task is a bit harder, for some given strings, find the length of the longest common substring of them.

Here common substring means a substring of two or more strings.

Input

The input contains at most 10 lines, each line consists of no more than 100000 lowercase letters, representing a string.

Output

The length of the longest common substring. If such string doesn‘t exist, print "0" instead.

Example

Input:alsdfkjfjkdsalfdjskalajfkdslaaaaajfaaaaOutput:2

Notice: new testcases added

【SPOJ】1812. Longest Common Substring II(后缀自动机)