首页 > 代码库 > leetcode -day11 Clone Graph & Palindrome Partitioning I II

leetcode -day11 Clone Graph & Palindrome Partitioning I II



1、Clone Graph

Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors.


OJ‘s undirected graph serialization:

Nodes are labeled uniquely.

We use # as a separator for each node, and , as a separator for node label and each neighbor of the node.

As an example, consider the serialized graph {0,1,2#1,2#2,2}.

The graph has a total of three nodes, and therefore contains three parts as separated by #.

  1. First node is labeled as 0. Connect node 0 to both nodes 1 and 2.
  2. Second node is labeled as 1. Connect node 1 to node 2.
  3. Third node is labeled as 2. Connect node 2 to node 2 (itself), thus forming a self-cycle.

Visually, the graph looks like the following:

       1
      /      /       0 --- 2
         /          \_/

分析:复制图,乍一看挺像复制有随机指针的链表的,复制随机链表是三步进行的,图不能采用此种方法,但是可以借鉴,可以先深度遍历,相当于先复制所有节点,再复制邻居指针,采用递归的形式进行深度遍历。复制邻居指针时,需要判断邻居结点是否已经访问过,而结点的label是唯一的,可以采用map来保存。同时注意当map中值为指针时,key存在用下标进行访问时,map[key]也为空,采用map.find(key)!=map.end()来进行判断表中是否已经保存。

代码如下:

class Solution {
public:
    UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) {
        if(node==NULL){
            return NULL;
        }
        unordered_map<int,UndirectedGraphNode*> labelNodeMap;
        return cloneGraphRecursive(node,labelNodeMap);
        
    }
    UndirectedGraphNode *cloneGraphRecursive(UndirectedGraphNode *node,unordered_map<int,UndirectedGraphNode*>& labelNodeMap) {
        if(labelNodeMap.find(node->label) != labelNodeMap.end()){
            return labelNodeMap[node->label];
        }
        UndirectedGraphNode* clonedNode = new UndirectedGraphNode(node->label);
        labelNodeMap.insert(make_pair(node->label,clonedNode));
        for(int i=0; i< node->neighbors.size(); ++i){
            UndirectedGraphNode* neighborNode = cloneGraphRecursive(node->neighbors[i],labelNodeMap);
            clonedNode->neighbors.push_back(neighborNode);
        }
        return clonedNode;
    }
};

2、Palindrome Partitioning

Given a string s, partition s such that every substring of the partition is a palindrome.

Return all possible palindrome partitioning of s.

For example, given s = "aab",
Return

  [
    ["aa","b"],
    ["a","a","b"]
  ]

分析:输出一个字符串的所有可划分为回文的可能,采用递归的手法,依次判断前i个是否是回文,并递归判断后续的。

代码如下:

class Solution {
public:
	vector<vector<string>> partition(string s) {
		vector<string> strVec;
		partitionCore(s,strVec);
		return allPartition;
	}
	void partitionCore(string s,vector<string>& strVec){
		int length = s.length();
		if(s.empty()){
			allPartition.push_back(strVec);
			return;
		}
		for(int i=1; i<=length; ++i){
			string subStr = s.substr(0,i);
			if(isPalindrome(subStr)){
				strVec.push_back(subStr);
				string leftSubStr = s.substr(i,length-i);
				partitionCore(leftSubStr,strVec);
				strVec.pop_back();
			}
		}
	}
	bool isPalindrome(string s){
		int length = s.length();
		if(length == 1){
			return true;
		}
		int begin = 0;
		int end = length-1;
		while(begin <= end){
			if(s[begin]!=s[end]){
				return false;
			}
			++begin;
			--end;
		}
		return true;
	}
	vector<vector<string>> allPartition;
};


3、Palindrome Partitioning II

Given a string s, partition s such that every substring of the partition is a palindrome.

Return the minimum cuts needed for a palindrome partitioning of s.

For example, given s = "aab",
Return 1 since the palindrome partitioning ["aa","b"] could be produced using 1 cut.

分析:初步分析,根据上题稍加修改,就能计算出来最小分割数,但是一直出现超时的问题。递归耗时太多,超时的代码如下:

Status: 

Time Limit Exceeded

class Solution {
public:
	int minCut(string s) {
		minCutNum = s.length()-1;
		partitionCore(s,0);
		return minCutNum;
	}
	void partitionCore(string s,int cutNum){
		int length = s.length();
		if(s.empty()){
			-- cutNum;
			if(cutNum < minCutNum){
				minCutNum = cutNum;
			}
			return;
		}
		if(minCutNum <= cutNum){
		    return;
		}
		for(int i=length; i>=1; --i){
			if(isPalindrome(s,0,i-1)){
				string leftSubStr = s.substr(i,length-i);
				partitionCore(leftSubStr,cutNum+1);
				if(minCutNum == 0){
					return;
				}
			}
		}
	}
	bool isPalindrome(string s,int i,int j){
		
		while(i <= j){
			if(s[i]!=s[j]){
				return false;
			}
		    ++i;
		    --j;
		}
		return true;
	}
	int minCutNum;
};


改进,分析上述超时的原因,有两个方面,第一采用递归而不是循环的方式耗时多,第二在判断字串是否是回文串时,采用遍历操作,很多子问题重复求解。

有了原因的分析,来改进,对于第二个判断字串是否是回文串时,采用动态规划的问题,如判断一个字符串位置i到j的字串是否为回文串,如果i和j相同则只有一个字符,为真;如果s[i]==s[j],则和字符串位置i+1到j-1的分析相同.为了避免多次重复计算,保存各个位置到另外位置的回文串标志。

对于第一个问题,也可以采用动态规划的方法,计算从0位置开始到i位置的分割数,如果0到i字符串就是一个回文串则分割数为0;如果不是,则从0-i开始依次判断其中j到i位置是否是回文串,如果是就是从0位置开始到j位置的分割数+1,得到的最小值为此时要求的分个数。其实思想和上题是一样的。

代码如下:(边界问题处理了好久,一定不要下标越界)

Accepted

class Solution {
public:
	int minCut(string s) {
		int length = s.length();
		if(length <= 1){
			return 0;
		}
		vector<int> tempMap;
		for(int i=0; i<length; ++i){
			tempMap.push_back(0);
		}
		vector<int> minVec;
		for(int i=0; i<length; ++i){
			tempMap[i]= 1;
			paliMap.push_back(tempMap);
			tempMap[i] = 0;
			minVec.push_back(length-1);
		}
		
		for(int i=0; i<length; ++i){
			if(isPalindrome(s,0,i)){
				minVec[i] = 0;
			}else{
				int tempMin = length-1;
				for(int j=0; j<i; ++j){
					int temp = 0;
					if(isPalindrome(s,j+1,i)){
						temp = minVec[j]+1;
					}else{
						temp = minVec[j] + i - j;
					}
					if(temp<tempMin){
						tempMin = temp;
					}
				}
				minVec[i] = tempMin;
			}
		}
		return minVec[length-1];
	}
	bool isPalindrome(string& s, int i, int j){
		if(i > j || i<0 || j >= s.length()){
			return false;
		}
		if(paliMap[i][j]){
			return true;
		}
		if(s[i] == s[j]){
			if(i == j-1){
				return paliMap[i][j] = 1;
			}else{
				return paliMap[i][j] = paliMap[i+1][j-1];
			}
		}else{
			return paliMap[i][j] = 0;
		}
	}
	vector<vector<int>> paliMap;
};