首页 > 代码库 > Hihocoder #1081 最短路径一 dijkstra

Hihocoder #1081 最短路径一 dijkstra

#1081 : 最短路径·一

时间限制:10000ms
单点时限:1000ms
内存限制:256MB

描述

万圣节的早上,小Hi和小Ho在经历了一个小时的争论后,终于决定了如何度过这样有意义的一天——他们决定去闯鬼屋!

在鬼屋门口排上了若干小时的队伍之后,刚刚进入鬼屋的小Hi和小Ho都颇饥饿,于是他们决定利用进门前领到的地图,找到一条通往终点的最短路径。

鬼屋中一共有N个地点,分别编号为1..N,这N个地点之间互相有一些道路连通,两个地点之间可能有多条道路连通,但是并不存在一条两端都是同一个地点的道路。那么小Hi和小Ho至少要走多少路程才能够走出鬼屋去吃东西呢?

/*

小Ho想了想说道:“唔……我觉得动态规划可以做,但是我找不到计算的顺序,如果我用f[i]表示从S到达编号为i的节点的最短距离的话,我并不能够知道f[1]..f[N]的计算顺序。”

“所以这个问题不需要那么复杂的算法啦,我就稍微讲讲你就知道了!”小Hi道:“路的长度不可能为负数对不对?”

“那是自然,毕竟人类还没有发明时光机器……”小Ho点点头。

于是小Hi问道:“那么如果就看与S相邻的所有节点中与S最近的那一个S‘,并且从S到S‘的距离为L,那么有可能存在另外的道路使得从S到S‘的距离小于L么?”

“不能,因为S‘是与S相邻的所有节点中与S最近的节点,那么从S到其他相邻点的距离一定是不小于L的,也就是说无论接下来怎么走,回到L点时总距离一定大于L。”小Ho思考了一会,道。

“也就是说你已经知道了从S到S‘的最短路径了是么?”小Hi继续问道。

“是的,这条最短路径的长度是L。”小Ho答道。

小Hi继续道:“那么现在,我们不妨将S同S‘看做一个新的节点?称作S1,然后我就计算与S相邻或者与S‘相邻的所有节点中,与S最近的哪一个节 点S‘‘。注意,在这个过程中,与S相邻的节点与S的距离在上一步就已经求出来了,那么我要求的只有与S‘相邻的那些节点与S的距离——这个距离等于S与 S‘的距离加上S‘与这些结点的距离,对于其中重复的节点——同时与S和S‘相邻的节点,取两条路径中的较小值。”

小Ho点了点头:“那么同之前一样,与S1(即S与S‘节点)相邻的节点中与S‘距离最近的节点如果是S‘‘的话,并且这个距离是L2,那么我们可以知道S到S‘‘的最短路径的长度便是L2,因为不可能存在另外的道路比这个更短了。”

于是小Hi总结道:“接下来的问题不就很简单了么,只需要以此类推,每次将与当前集合相邻(即与当前集合中任意一个元素)的所有节点中离S最近的节 点(这些距离可以通过上一次的计算结果推导而出)选出来添加到当前集合中,我就能够保证在每一个节点被添加到集合中时所计算的离S的距离是它与S之间的最 短路径!”

“原来是这样!但是我的肚子更饿了呢!”言罢,小Ho的肚子咕咕叫了起来。

*/


输入

每个测试点(输入文件)有且仅有一组测试数据。

在一组测试数据中:

第1行为4个整数N、M、S、T,分别表示鬼屋中地点的个数和道路的条数,入口(也是一个地点)的编号,出口(同样也是一个地点)的编号。

接下来的M行,每行描述一条道路:其中的第i行为三个整数u_i, v_i, length_i,表明在编号为u_i的地点和编号为v_i的地点之间有一条长度为length_i的道路。

对于100%的数据,满足N<=10^3,M<=10^4, 1 <= length_i <= 10^3, 1 <= S, T <= N, 且S不等于T。

对于100%的数据,满足小Hi和小Ho总是有办法从入口通过地图上标注出来的道路到达出口。

输出

对于每组测试数据,输出一个整数Ans,表示那么小Hi和小Ho为了走出鬼屋至少要走的路程。

样例输入
5 23 5 41 2 7082 3 1123 4 7214 5 3395 4 9601 5 8492 5 981 4 992 4 252 1 2003 1 1463 2 1061 4 8604 1 7955 4 4795 4 2803 4 3411 4 6224 2 3622 3 4154 1 9042 1 7162 5 575
样例输出
123
//Dijstra//hiho23#include<algorithm>#include<cassert>#include<cstdio>#include<cmath>#include<ctime>#include<cstring>using namespace std;int S;int T;int N,M,i,j,k,m[1024][1024];bool v[1024];int main(){    scanf("%u%u%u%u",&N,&M,&S,&T);    {        memset(m,66,sizeof(m));        while(M--){            scanf("%u%u%u",&i,&k,&j);            if(j<m[k][i]){                m[k][i]=m[i][k]=j;            }        }        memset(&v[1],0,N);        v[S]=true;        for(;;){            k=0;            for(i=1;i<=N;i++){                if(v[i]==0&&m[S][i]<m[S][k]){                    k=i;                }            }            if(k==T){                printf("%u\n",m[S][T]);                break;            }            v[k]=1;            for(i=1;i<=N;i++){                if(v[i]==0&&m[S][i]>(m[k][i]+m[S][k])){                    m[S][i]=(m[k][i]+m[S][k]);                }            }        }    }    return 0;}

 

Hihocoder #1081 最短路径一 dijkstra