首页 > 代码库 > UVA 12672 Eleven(DP)
UVA 12672 Eleven(DP)
12672 - Eleven
Time limit: 5.000 seconds
In this problem, we refer to the digits of a positive integer as the sequence of digits required to write
it in base 10 without leading zeros. For instance, the digits of N = 2090 are of course 2, 0, 9 and 0.
Let N be a positive integer. We call a positive integer M an eleven-multiple-anagram of N if and
only if (1) the digits of M are a permutation of the digits of N, and (2) M is a multiple of 11. You are
required to write a program that given N, calculates the number of its eleven-multiple-anagrams.
As an example, consider again N = 2090. The values that meet the first condition above are 2009,
2090, 2900, 9002, 9020 and 9200. Among those, only 2090 and 9020 satisfy the second condition, so
the answer for N = 2090 is 2.
Input
The input file contains several test cases, each of them as described below.
A single line that contains an integer N (1 ≤ N ≤ 10^100).
Output
For each test case, output a line with an integer representing the number of eleven-multiple-anagrams
of N . Because this number can be very large, you are required to output the remainder of dividing it
by 109 + 7.
Sample Input
2090
16510
201400000000000000000000000000
Sample Output
2
12
0
一条很好的DP题。
问一个数重排后(不包括前序0) , 有多少个数能够被整除11。
对于11的倍数,可以发现一个规律就是:
( 奇数位数字的总和 - 偶数为数字的总和 )% 11 == 0的数能够被11整除
因为作为11的倍数,都符合:
77000 85481是可以被11整除的。
7700 因为它各个相邻位都有一个相等的性质。
770 对于奇数位要进位的话,相当于少加了10(即-10) , 同时偶数为多了1(即-1) ,还是符合被11整除
11 偶数为亦然 , 偶数为进位, 相当于少减10 ,(即+10) , 同时奇数位多了1(即+1)。
------------
85481
那么,设一个 dp[i][j][k] 表示用了i位(0~9)数字,奇数位有j个数,余数是k的组合成的数有多少个。
#include <bits/stdc++.h>using namespace std;typedef long long LL;const int mod = 1e9+7;const int N = 205 ;const int M = 11 ;LL cnt[M] , dp[M][N][M] , C[N][N];string s;void Init() { C[0][0] = 1 ; for( int i = 1 ; i < N ; ++i ){ for( int j = 0 ; j <= i ; ++j ){ C[i][j]=(j==0)?1:(C[i-1][j]+C[i-1][j-1])%mod ; } }}void Run() { memset( cnt , 0 ,sizeof cnt ) ; memset( dp , 0 ,sizeof dp ) ; int n = s.size() , n2 = n / 2 , n1 = n - n2 ; for( int i = 0 ; i < n ; ++i ) cnt[ 9-(s[i]-‘0‘) ]++ ; dp[0][0][0] = 1 ; LL sum = 0 ; for( int i = 0 ; i < 10 ; ++i ) { // digit for( int j = 0 ; j <= n1 ; ++j ) { // odd used for( int k = 0 ; k < 11 ; ++k ) { // remainder if( !dp[i][j][k] || j > sum ) continue ; int j1 = j , j2 = sum - j; for( int z = 0 ; z <= cnt[i] ; ++z ){ int z1 = z , z2 = cnt[i] - z ; if( j1 + z1 > n1 || j2 + z2 > n2 ) continue ; LL tmp = dp[i][j][k]; if( (n&1) && i==9 ) tmp = tmp * C[j1+z1-1][z1] % mod ; else tmp = tmp * C[j1+z1][z1] % mod ; if(!(n&1) && i==9 ) tmp = tmp * C[j2+z2-1][z2] % mod ; else tmp = tmp * C[j2+z2][z2] % mod; int _i = i + 1 , _j = j1 + z1 , _k = ( k + z1*(9-i)-z2*(9-i)+11*10000)%11; dp[_i][_j][_k] = ( dp[_i][_j][_k] + tmp ) % mod ; } } } sum += cnt[i]; } cout << dp[10][n1][0] << endl ;}int main(){ Init(); while( cin >> s ) Run();}
UVA 12672 Eleven(DP)