首页 > 代码库 > 实习总结

实习总结

一 boost定时器的--------------------------------------------------------------------------------------------------------

(1)简单实用:

<script src="https://code.csdn.net/snippets/547980.js" type="text/javascript"></script>
(2)异步的形式:

<script src="https://code.csdn.net/snippets/547988.js" type="text/javascript"></script>
(3)上面演示了基本用法,但它只能发生一次.问题是怎么定义一个重复发生的定时器(就是隔一定的时间它就会发生一次.)呢,下面的代码就是了, 关键在于回调函数中更改了延时不断的延长定时器 

<script src="https://code.csdn.net/snippets/547990.js" type="text/javascript"></script>
二 linux下获取shell命令执行结果:--------------------------------------------------------------------

<script src="https://code.csdn.net/snippets/547999.js" type="text/javascript"></script>

三 linux和windows下建立多级目录(对于boost的systemfile 的跨平台库获取当前目录有时不稳定只能单独书写)

<script src="https://code.csdn.net/snippets/548020.js" type="text/javascript"></script>
四 精确计时器(跨平台课考虑使用boost中的date_time 库)-----------------------------------------------------------

(1)time()获取当前的系统时间,返回的结果是一个time_t类型,其实就是一个大整数,其值表示从CUT(Coordinated Universal Time)时间1970年1月1日00:00:00(称为UNIX系统的Epoch时间)到当前时刻的秒数.   

void test1()
{
    time_t start,stop;
    start = time(NULL);
    foo();//dosomething
    stop = time(NULL);
    printf("Use Time:%ld\n",(stop-start));
}void test1()
{
    time_t start,stop;
    start = time(NULL);
    foo();//dosomething
    stop = time(NULL);
    printf("Use Time:%ld\n",(stop-start));
}

(2)clock()函数返回从“开启这个程序进程”到“程序中调用clock()函数”时之间的CPU时钟计时单元(clock tick)数,在MSDN中称之为挂钟时间(wal-clock)常量CLOCKS_PER_SEC,它用来表示一秒钟会有多少个时钟计时单元

void test2()
{
    double dur;
    clock_t start,end;
    start = clock();
    foo();//dosomething
    end = clock();
    dur = (double)(end - start);
    printf("Use Time:%f\n",(dur/CLOCKS_PER_SEC));
}

(3)timeGetTime()函数以毫秒计的系统时间。该时间为从系统开启算起所经过的时间,是windows api

void test3()
{
    DWORD t1,t2;
    t1 = timeGetTime();
    foo();//dosomething
    t2 = timeGetTime();
    printf("Use Time:%f\n",(t2-t1)*1.0/1000);
}

(4)QueryPerformanceCounter()这个函数返回高精确度性能计数器的值,它可以以微妙为单位计时.但是QueryPerformanceCounter()确切的精确计时的最小单位是与系统有关的,所以,必须要查询系统以得到QueryPerformanceCounter()返回的嘀哒声的频率.QueryPerformanceFrequency()提供了这个频率值,返回每秒嘀哒声的个数.

void test4()
{
    LARGE_INTEGER t1,t2,tc;
    QueryPerformanceFrequency(&tc);
    QueryPerformanceCounter(&t1);
    foo();//dosomething
    QueryPerformanceCounter(&t2);
    printf("Use Time:%f\n",(t2.QuadPart - t1.QuadPart)*1.0/tc.QuadPart);
}

(5)GetTickCount返回(retrieve)从操作系统启动到现在所经过(elapsed)的毫秒数,它的返回值是DWORD

void test5()
{
    DWORD t1,t2;
    t1 = GetTickCount();
    foo();//dosomething
    t2 = GetTickCount();
    printf("Use Time:%f\n",(t2-t1)*1.0/1000);
}

(6)RDTSC指令,在Intel   Pentium以上级别的CPU中,有一个称为“时间戳(Time   Stamp)”的部件,它以64位无符号整型数的格式,记录了自CPU上电以来所经过的时钟周期数。由于目前的CPU主频都非常高,因此这个部件可以达到纳秒级的计时精度。这个精确性是上述几种方法所无法比拟的.在Pentium以上的CPU中,提供了一条机器指令RDTSC(Read   Time   Stamp   Counter)来读取这个时间戳的数字,并将其保存在EDX:EAX寄存器对中。由于EDX:EAX寄存器对恰好是Win32平台下C++语言保存函数返回值的寄存器,所以我们可以把这条指令看成是一个普通的函数调用,因为RDTSC不被C++的内嵌汇编器直接支持,所以我们要用_emit伪指令直接嵌入该指令的机器码形式0X0F、0X31

inline unsigned __int64 GetCycleCount()
{
    __asm
    {
        _emit 0x0F;
        _emit 0x31;
    }
}


void test6()
{
    unsigned long t1,t2;
    t1 = (unsigned long)GetCycleCount();
    foo();//dosomething
    t2 = (unsigned long)GetCycleCount();
    printf("Use Time:%f\n",(t2 - t1)*1.0/FREQUENCY);   //FREQUENCY指CPU的频率
}

(7)gettimeofday() linux环境下的计时函数,int gettimeofday ( struct timeval * tv , struct timezone * tz ),gettimeofday()会把目前的时间有tv所指的结构返回,当地时区的信息则放到tz所指的结构中.

//timeval结构定义为:
struct timeval{
long tv_sec; /*秒*/
long tv_usec; /*微秒*/
};
//timezone 结构定义为:
struct timezone{
int tz_minuteswest; /*和Greenwich 时间差了多少分钟*/
int tz_dsttime; /*日光节约时间的状态*/
};
void test7()
{
    struct timeval t1,t2;
    double timeuse;
    gettimeofday(&t1,NULL);
    foo();
    gettimeofday(&t2,NULL);
    timeuse = t2.tv_sec - t1.tv_sec + (t2.tv_usec - t1.tv_usec)/1000000.0;
    printf("Use Time:%f\n",timeuse);
}

(8)linux环境下,用RDTSC指令计时.与方法6是一样的.只不过在linux实现方式有点差异.

#if defined (__i386__)
static __inline__ unsigned long long GetCycleCount(void)
{
        unsigned long long int x;
        __asm__ volatile("rdtsc":"=A"(x));
        return x;
}
#elif defined (__x86_64__)
static __inline__ unsigned long long GetCycleCount(void)
{
        unsigned hi,lo;
        __asm__ volatile("rdtsc":"=a"(lo),"=d"(hi));
        return ((unsigned long long)lo)|(((unsigned long long)hi)<<32);
}
#endif


void test8()
{
        unsigned long t1,t2;
        t1 = (unsigned long)GetCycleCount();
        foo();//dosomething
        t2 = (unsigned long)GetCycleCount();
        printf("Use Time:%f\n",(t2 - t1)*1.0/FREQUENCY); //FREQUENCY  CPU的频率
}

 

简单的比较表格如下

序号函数类型精度级别时间
1timeC系统调用<1s
2clcokC系统调用<10ms
3timeGetTimeWindows API<1ms
4QueryPerformanceCounterWindows API<0.1ms
5GetTickCountWindows API<1ms
6RDTSC指令<0.1ms
7gettimeofday linux环境下C系统调用<0.1ms


  总结,方法1,2,7,8可以在linux环境下执行,方法1,2,3,4,5,6可以在windows环境下执行.其中,timeGetTime()和GetTickCount()的返回值类型为DWORD,当统计的毫妙数过大时,将会使结果归0,影响统计结果.
        测试结果,windows环境下,主频为1.6GHz,单位为秒.

1 Use Time:0
2 Use Time:0.390000
3 Use Time:0.388000
4 Use Time:0.394704
5 Use Time:0.407000
6 Use Time:0.398684

  linux环境下,主频为2.67GHz,单位为秒

1 Use Time:1
2 Use Time:0.290000
7 Use Time:0.288476
8 Use Time:0.297843

      由于time()计时函数的精度比较低,多次运行程序时,将会得到不同的结果,时而为0,时而为1

foo()函数如下:

void foo()
{
    long i;
    for (i=0;i<100000000;i++)
    {
        long a= 0;
        a = a+1;
    }
}

实习总结