首页 > 代码库 > POJ 2411 Mondriaan's Dream (状压DP)
POJ 2411 Mondriaan's Dream (状压DP)
题意:给出一个n*m的棋盘,及一个小的矩形1*2,问用这个小的矩形将这个大的棋盘覆盖有多少种方法。
析:对第(i,j)位置,要么不放,要么竖着放,要么横着放,如果竖着放,我们记第 (i,j)位置为0,(i+1,j)为1,如果横着放,那么我们记
(i,j),(i,j+1)都为1,然后dp[i][s]表示 第 i 行状态为 s 时,有多少方法,那么我们就可以考虑与和匹配的状态,这个也很容易判断。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e16; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e6 + 10; const int mod = 100000000; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } LL dp[12][1<<11]; bool judge(int i, int j){ int cnt = 0; for(int k = 0; k < m; ++k){ if(i&(1<<k)){ if(j&(1<<k)) cnt ^= 1; else if(cnt) return false; } else{ if(!(j&(1<<k))) return false; if(cnt) return false; } } return cnt == 0; } bool judge1(int i){ int cnt = 0; for(int j = 0; j < m; ++j) if(i&(1<<j)) cnt ^= 1; else if(cnt) return false; return cnt == 0; } int main(){ while(scanf("%d %d", &n, &m) == 2 && m+n){ if(n < m) swap(n, m); if(n * m & 1){ cout << "0" << endl; continue; } int all = 1 << m; memset(dp, 0, sizeof dp); for(int i = 0; i < all; ++i) dp[1][i] = judge1(i); for(int i = 2; i <= n; ++i){ for(int j = 0; j < all; ++j) for(int k = 0; k < all; ++k) if(judge(j, k)) dp[i][j] += dp[i-1][k]; } cout << dp[n][all-1] << endl; } return 0; }
POJ 2411 Mondriaan's Dream (状压DP)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。