首页 > 代码库 > HDU - 3836 Equivalent Sets (强连通分量+DAG)

HDU - 3836 Equivalent Sets (强连通分量+DAG)

题目大意:给出N个点,M条边。要求你加入最少的边,使得这个图变成强连通分量

解题思路:先找出全部的强连通分量和桥,将强连通分量缩点。桥作为连线,就形成了DAG了

这题被坑了。用了G++交的,结果一直RE,用C++一发就过了。。。

#include <cstdio>
#include <cstring>

#define N 20010
#define M 100010
#define min(a,b) ((a) > (b)?

(b): (a)) #define max(a,b) ((a) > (b)?

(a): (b)) struct Edge{ int from, to, next; }E[M]; int head[N], sccno[N], pre[N], lowlink[N], stack[N], in[N], out[N]; int n, m, tot, dfs_clock, top, scc_cnt; void AddEdge(int from, int to) { E[tot].from = from; E[tot].to = to; E[tot].next = head[from]; head[from] = tot++; } void init() { memset(head, -1, sizeof(head)); tot = 0; int u, v; for (int i = 0; i < m; i++) { scanf("%d%d", &u, &v); AddEdge(u, v); } } void dfs(int u) { pre[u] = lowlink[u] = ++dfs_clock; stack[++top] = u; for (int i = head[u]; i != -1; i = E[i].next) { int v = E[i].to; if (!pre[v]) { dfs(v); lowlink[u] = min(lowlink[u], lowlink[v]); } else if (!sccno[v]) { lowlink[u] = min(lowlink[u], pre[v]); } } int x; if (pre[u] == lowlink[u]) { scc_cnt++; while (1) { x = stack[top--]; sccno[x] = scc_cnt; if (x == u) break; } } } void solve() { memset(sccno, 0, sizeof(sccno)); memset(pre, 0, sizeof(pre)); dfs_clock = top = scc_cnt = 0; for (int i = 1; i <= n; i++) if (!pre[i]) dfs(i); if (scc_cnt <= 1) { printf("0\n"); return ; } for (int i = 1; i <= scc_cnt; i++) in[i] = out[i] = 1; for (int i = 0; i < tot; i++) { int u = E[i].from, v = E[i].to; if (sccno[u] != sccno[v]) { out[sccno[u]] = in[sccno[v]] = 0; } } int a = 0, b = 0; for (int i = 1; i <= scc_cnt; i++) { if (out[i]) a++; if (in[i]) b++; } printf("%d\n", max(a, b)); } int main() { while (scanf("%d%d", &n, &m) != EOF) { init(); solve(); } return 0; }

<script type="text/javascript"> $(function () { $(‘pre.prettyprint code‘).each(function () { var lines = $(this).text().split(‘\n‘).length; var $numbering = $(‘
    ‘).addClass(‘pre-numbering‘).hide(); $(this).addClass(‘has-numbering‘).parent().append($numbering); for (i = 1; i <= lines; i++) { $numbering.append($(‘
  • ‘).text(i)); }; $numbering.fadeIn(1700); }); }); </script>

HDU - 3836 Equivalent Sets (强连通分量+DAG)