首页 > 代码库 > HDU 5105 Math Problem --数学,求导
HDU 5105 Math Problem --数学,求导
官方题解:
f(x)=|a∗x3+b∗x2+c∗x+d|, 求最大值。令g(x)=a∗x3+b∗x2+c∗x+d,f(x)的最大值即为g(x)的正最大值,或者是负最小值。a!=0时,
g′(x)=3∗a∗x2+2∗b∗x+c 求出g′(x)的根(若存在,x1,x2,由导数的性质知零点处有极值。ans=max(f(xi)|L≤xi≤R).然后考虑两个端点的特殊性有ans=max(ans,f(L),f(R)).
当时 x = -c/(2*b) 写成 x = -c/2*b 了,然后过pretest了。 然后。。你敢信?
代码:
#include <iostream>#include <cstdio>#include <cstring>#include <cstdlib>#include <cmath>#include <algorithm>#define eps 1e-8using namespace std;#define N 50017int sgn(double x){ if(x > eps) return 1; if(x < -eps) return -1; return 0;}double a,b,c,d,L,R;double calc(double x) { return fabs(a*x*x*x + b*x*x + c*x + d); }int main(){ while(scanf("%lf%lf%lf%lf%lf%lf",&a,&b,&c,&d,&L,&R)!=EOF) { if(sgn(a) == 0) { if(sgn(b) == 0) { if(sgn(fabs(calc(L))-fabs(calc(R))) >= 0) printf("%.2f\n",calc(L)); else printf("%.2f\n",calc(R)); } else { double X = -c/(2.0*b); double k1 = calc(L); double k2 = calc(R); double k3; if(sgn(X-L) >= 0 && sgn(X-R) <= 0) k3 = calc(X); else k3 = 0.0; printf("%.2f\n",max(max(k1,k2),k3)); } continue; } double delta = 4.0*b*b - 12.0*a*c; if(sgn(delta) <= 0) { if(sgn(fabs(calc(L))-fabs(calc(R))) >= 0) printf("%.2f\n",calc(L)); else printf("%.2f\n",calc(R)); } else { double X1 = (-2.0*b + sqrt(delta))/(6.0*a); double X2 = (-2.0*b - sqrt(delta))/(6.0*a); double k1 = calc(L); double k2 = calc(R); double k3,k4; if(sgn(X1-L) >= 0 && sgn(X1-R) <= 0) k3 = calc(X1); else k3 = 0.0; if(sgn(X2-L) >= 0 && sgn(X2-R) <= 0) k4 = calc(X2); else k4 = 0.0; printf("%.2f\n",max(max(max(k1,k2),k3),k4)); } } return 0;}
HDU 5105 Math Problem --数学,求导
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。