首页 > 代码库 > 3N Numbers

3N Numbers

D - 3N Numbers


Time limit : 2sec / Memory limit : 256MB

Score : 500 points

Problem Statement

Let N be a positive integer.

There is a numerical sequence of length 3Na=(a1,a2,…,a3N). Snuke is constructing a new sequence of length 2Na‘, by removing exactly N elements from a without changing the order of the remaining elements. Here, the score of a‘ is defined as follows: (the sum of the elements in the first half of a‘)−(the sum of the elements in the second half of a‘).

Find the maximum possible score of a‘.

Constraints

  • 1≤N≤105
  • ai is an integer.
  • 1≤ai≤109

Partial Score

  • In the test set worth 300 points, N≤1000.

Input

Input is given from Standard Input in the following format:

Na1 a2  a3N

Output

Print the maximum possible score of a‘.


Sample Input 1

23 1 4 1 5 9

Sample Output 1

1

When a2 and a6 are removed, a‘ will be (3,4,1,5), which has a score of (3+4)−(1+5)=1.


Sample Input 2

11 2 3

Sample Output 2

-1

For example, when a1 are removed, a‘ will be (2,3), which has a score of 2−3=−1.


Sample Input 3

38 2 2 7 4 6 5 3 8

Sample Output 3

5

For example, when a2a3 and a9 are removed, a‘ will be (8,7,4,6,5,3), which has a score of (8+7+4)−(6+5+3)=5.

 

 

/// 题意是:有一个 3n 长的序列,现拿走 n 个数,然后分成前 n 个数,和后 n 个数 ,求前n个数和减后 n 个数和的最大值

// 用一个优先队列保存区间最大 n 数和,并赋给数组保存

用一个优先队列保存区间最小 n 数和,并赋给数组保存

最后循环一遍即可

 

技术分享
 1 #include <bits/stdc++.h> 2 using namespace std; 3 #define LL long long 4 #define INF (1LL<<62) 5 #define MX 100005*3 6  7 LL a[MX]; 8 LL ma[MX]; 9 LL mi[MX];10 11 int main()12 {13     LL n;14     cin>>n;15 16     for (int i=1;i<=3*n;i++)17         scanf("%lld",&a[i]);18     priority_queue <LL> Q;19     LL sum = 0;20     for (int i=1;i<=2*n;i++)21     {22         Q.push(-a[i]);23         sum+=a[i];24 25         if (i>n) sum += Q.top(),Q.pop();26         ma[i]=sum;27     }28 29     while (!Q.empty()) Q.pop();30     sum=0;31     for (int i=3*n;i>=n+1;i--)32     {33         Q.push(a[i]);34         sum+=a[i];35 36         if (i<=2*n) sum -= Q.top(),Q.pop();37         mi[i]=sum;38     }39 40     LL ans = -INF;41     for (int i=n;i<=2*n;i++)42         ans = max (ans, ma[i]-mi[i+1]);43     cout<<ans<<endl;44     return 0;45 }
View Code

 

 

 

3N Numbers