首页 > 代码库 > CC150 3.4
CC150 3.4
3.4 In the classic problem of the Towers of Hanoi, you have 3 rods and N disks of different sizes which can slide onto any tower. The puzzle starts with disks sorted in ascending order of size from top to bottom (e.g., each disk sits on top of an even larger one). You have the following constraints: (A) Only one disk can be moved at a time. (B) A disk is slid off the top of one rod onto the next rod. (C) A disk can only be placed on top of a larger disk. Write a program to move the disks from the first rod to the last using Stacks.
class Hanoi { void init(); void resolve() { // Resolve (N) is: // Move (N-1) to stack2 // Move Nth to stack3 // Move (N-1) to stack3 move(n , a, c, b); } void move(int n, Disk a, Disk b, Disk c) // A to B, using C { if (n == 1) b.push(a.pop()); move(n - 1, a, c, b); b.push(a.pop()); move(n - 1, c, b, a); } }
CC150 3.4
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。