首页 > 代码库 > GMM高斯混合模型 学习(2)
GMM高斯混合模型 学习(2)
(图片from http://www.cnblogs.com/zhangchaoyang/articles/2624882.html)
单高斯分布
如果特征x是一维(只考虑点的x坐标)的,高斯分布是:(from这篇博客)
如果特征是二维(x坐标和y坐标,意义可以是身高和体重)的,聚类的效果应该是:
在上面两张图中,我们用EM—GMM算法做聚类,用的是单个高斯函数描述一个咧别。
如用一维高斯描述了男生和女生的身高分布。
高斯混合分布
但是如果统计的这些身高同时有荷兰人(高)和刚果人(矮),这个单高斯模型会出什么问题?
显然用一个高斯分布来描述男女身高是不行了,这样就需要混合高斯模型,如:
【π表示各种人(荷兰男人、荷兰女人、刚果男人、刚果女人)所占的比例】
现在有一批男人身高数据(荷兰男人+刚果男人),我们可以参照这篇博客的EM方法得到
同理,可以得到女人身高的双高斯分布。
这样,用混合双高斯分布来判断 “荷兰美眉” 的性别就对了。【即将“荷兰美眉”的特征向量X带入Gm和Gf求概率】
GMM高斯混合模型 学习(2)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。