首页 > 代码库 > OpenCV运动目标检测——帧间差,混合高斯模型方法
OpenCV运动目标检测——帧间差,混合高斯模型方法
一、简单的帧间差方法
int _tmain(int argc, _TCHAR* argv[]) { VideoCapture capture("bike.avi"); if(!capture.isOpened()) return -1; double rate = capture.get(CV_CAP_PROP_FPS); int delay = 1000/rate; Mat framePro,frame,dframe; bool flag = false; namedWindow("image",CV_WINDOW_AUTOSIZE); namedWindow("test",CV_WINDOW_AUTOSIZE); while(capture.read(frame)){ if(false == flag) { framePro = frame.clone(); flag = true; } else { absdiff(frame,framePro,dframe); framePro = frame.clone(); threshold(dframe,dframe,80,255,CV_THRESH_BINARY); imshow("image",frame); imshow("test",dframe); waitKey(delay); } } return 0; }效果:
从中可以看出帧间差方法的缺点,的运动目标快的时候检测到的区域会拉大,图中的速度不是太快,但仍然可以看出有两个重叠的身影。
二、背景差法(混合高斯背景建模)
高斯背景模型在 运动检测中的应用
原理 : 高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。
对图像背景建立高斯模型的原理及过程:图像灰度直方图反映的是图像中某个灰度值出现的频次,也可以认为是图像灰度概率密度的估计。如果图像所包含的目标区域和背景区域相比比较大,且背景区域和目标区域在灰度上有一定的差异,那么该图像的灰度直方图呈现双峰-谷形状,其中一个峰对应于目标,另一个峰对应于背景的中心灰度。对于复杂的图像,尤其是医学图像,一般是多峰的。通过将直方图的多峰特性看作是多个高斯分布的叠加,可以解决图像的分割问题。
在智能监控系统中,对于运动目标的检测是中心内容,而在运动目标检测提取中,背景目标对于目标的识别和跟踪至关重要。而建模正是背景目标提取的一个重要环节。
我们首先要提起背景和前景的概念,前景是指在假设背景为静止的情况下,任何有意义的运动物体即为前景。建模的基本思想是从当前帧中提取前景,其目的是使背景更接近当前视频帧的背景。即利用当前帧和视频序列中的当前背景帧进行加权平均来更新背景,但是由于光照突变以及其他外界环境的影响,一般的建模后的背景并非十分干净清晰,而高斯混合模型是是建模最为成功的方法之一。
混合高斯模型使用K(基本为3到5个)个高斯模型来表征图像中各个像素点的特征,在新一帧图像获得后更新混合高斯模型, 用当前图像中的每个像素点与混合高斯模型匹配,如果成功则判定该点为背景点, 否则为前景点。 通观整个高斯模型,主要是有方差和均值两个参数决定,对均值和方差的学习,采取不同的学习机制,将直接影响到模型的稳定性、精确性和收敛性 。由于我们是对运动目标的背景提取建模,因此需要对高斯模型中方差和均值两个参数实时更新。为提高模型的学习能力,改进方法对均值和方差的更新采用不同的学习率;为提高在繁忙的场景下,大而慢的运动目标的检测效果,引入权值均值的概念,建立背景图像并实时更新,然后结合权值、权值均值和背景图像对像素点进行前景和背景的分类。
到这里为止,混合高斯模型的建模基本完成,我在归纳一下其中的流程,首先初始化预先定义的几个高斯模型,对高斯模型中的参数进行初始化,并求出之后将要用到的参数。其次,对于每一帧中的每一个像素进行处理,看其是否匹配某个模型,若匹配,则将其归入该模型中,并对该模型根据新的像素值进行更新,若不匹配,则以该像素建立一个高斯模型,初始化参数,代理原有模型中最不可能的模型。最后选择前面几个最有可能的模型作为背景模型,为背景目标提取做铺垫。
方法: 目前,运动物体检测的问题主要分为两类,摄像机固定和摄像机运动。对于摄像机运动的运动物体检测问题,比较著名的解决方案是光流法,通过求解偏微分方程求的图像序列的光流场,从而预测摄像机的运动状态。对于摄像机固定的情形,当然也可以用光流法,但是由于光流法的复杂性,往往难以实时的计算,所以我采用高斯背景模型。因为,在摄像机固定的情况下,背景的变化是缓慢的,而且大都是光照,风等等的影响,通过对背景建模,对一幅给定图像分离前景和背景,一般来说,前景就是运动物体,从而达到运动物体检测的目的。
单分布高斯背景模型
单分布高斯背景模型认为,对一个背景图像,特定像素亮度的分布满足高斯分布,即对背景图像B, (x,y)点的亮度满足:
IB (x,y) ~ N(u,d)
这样我们的背景模型的每个象素属性包括两个参数:平均值u 和 方差d。
对于一幅给定的图像G,如果 Exp(-(IG (x,y)-u(x,y))^2/(2*d^2)) > T,认为(x,y)是背景点,反之是前景点。
同时,随着时间的变化,背景图像也会发生缓慢的变化,这时我们要不断更新每个象素点的参数
u(t+1,x,y) = a*u(t,x,y) + (1-a)*I(x,y)
这里,a称为更新参数,表示背景变化的速度,一般情况下,我们不更新d(实验中发现更不更新 d,效果变化不大)。
int main( int argc, char** argv ) { VideoCapture cam("bike.avi");// 0打开默认的摄像头 if(!cam.isOpened()) return -1; namedWindow("mask",CV_WINDOW_AUTOSIZE); namedWindow("frame",CV_WINDOW_AUTOSIZE); Mat frame,mask,threImage,output; int delay = 1000/cam.get(CV_CAP_PROP_FPS); BackgroundSubtractorMOG bgSubtractor(10,10,0.5,false); //构造混合高斯模型 参数1:使用历史帧的数量 2:混合高斯个数,3:背景比例 4::噪声权重 while (true) { cam>>frame; imshow("frame",frame); bgSubtractor(frame,mask,0.001); imshow("mask",mask); waitKey(delay); } return 0; }效果:
相对于帧间差方法,检测出来的运动目标没有多余的区域,更符合目标本身。