首页 > 代码库 > numpy.where
numpy.where
np.where(condition[, x, y])
如果是一维,相当于[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]
输入条件,类数组形式,若判断结果成立则返回x,否则为y。
返回为tuple或者array。
当条件对象为一维,返回array。
条件对象为二维,返回tuple。第一部分为矩阵行的坐标,第二部分为矩阵列的坐标。
当条件对象维高维,按照二维矩阵操作,判断其中对象。
np.eye(n)生成对象数组,在np.where中按照一维操作及返回。
以下为scipy doc原文。
numpy.where
- numpy.where(condition[, x, y])
Return elements, either from x or y, depending on condition.
If only condition is given, return condition.nonzero().
Parameters: condition : array_like, bool
When True, yield x, otherwise yield y.
x, y : array_like, optional
Values from which to choose. x and y need to have the same shape as condition.
Returns: out : ndarray or tuple of ndarrays
If both x and y are specified, the output array contains elements of x where condition is True, and elements from y elsewhere.
If only condition is given, return the tuple condition.nonzero(), the indices where condition is True.
See also
nonzero, choose
Notes
If x and y are given and input arrays are 1-D, where is equivalent to:
[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]
np.where()
Examples>>>>>> np.where([[True, False], [True, True]],... [[1, 2], [3, 4]],... [[9, 8], [7, 6]])array([[1, 8], [3, 4]])>>>>>> np.where([[0, 1], [1, 0]])(array([0, 1]), array([1, 0]))>>>>>> x = np.arange(9.).reshape(3, 3)>>> np.where( x > 5 )(array([2, 2, 2]), array([0, 1, 2]))>>> x[np.where( x > 3.0 )] # Note: result is 1D.array([ 4., 5., 6., 7., 8.])>>> np.where(x < 5, x, -1) # Note: broadcasting.array([[ 0., 1., 2.], [ 3., 4., -1.], [-1., -1., -1.]])Find the indices of elements of x that are in goodvalues.>>>>>> goodvalues = [3, 4, 7]>>> ix = np.in1d(x.ravel(), goodvalues).reshape(x.shape)>>> ixarray([[False, False, False], [ True, True, False], [False, True, False]], dtype=bool)>>> np.where(ix)(array([1, 1, 2]), array([0, 1, 1]))
scipy doc : np.where()
numpy.where